Reactive power compensation

controller User Manual

Apply to: WGK-31-605 series

JIANGSU SFERE ELECTRIC CO., LTD.

Safety Instructions for Use

Thank you for choosing the product developed by our company. In order to facilitate your purchase and safe, correct, and efficient use of this product, please read this manual carefully and pay attention to the following points when using it.

Note:

1. The controller must be installed and serviced by a qualified electrician.

2. After the controller is powered on, do not touch the connection between the controller and the power supply. Before touching any components located at the back of the controller, the working power must be cut off.

3. Do not open live circuits, as this can cause dangerous overvoltage; When replacing or disassembling the controller, the current transformer (CT) must be short-circuited first.

4. There is no need to open the controller chassis, as there are no components inside that require user maintenance.

5. The electrical parameters provided to the device must be within the rated range.

Contents

1. Overview	1
1.1 Product instruction	1
1.2 Model selection	1
1.3 Technical specifications	1
2. Installation and wiring	3
3. Menu	7
3.1 Home page	7
3.2 Manual switching	8
3.3 Data measurement	8
3.4 Harmonic	10
3.5 Data export	11
3.6 Event record	12
3.7 Programming menu	12
3.7.1 Programming menu interface	13
3.7.2 Programming menu operations	14
Appendix MODBUS-RTU	21

1. Overview

1.1 Product instruction

Quoted national standards

JB/T 9663-2013 Low voltage reactive power automatic compensating controller

DL/T 1028-2006 Verification code for power quality analyzer

GB-T14549-1993 Harmonics in public supply network

Relative international standards

IEC 62053-23:2003 Electricity metering equipment (a.c.) - Particular requirements -

Part 23: Static meters for reactive energy (classes 2 and 3)

IEC 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use; part 1: general requirements

IEC 61000-2-11 Electromagnetic compatibility (EMC)-Part 2-11

IEC 60068-2-30 Environmental testing - Part 2-30

1.2 Model selection

1.3 Technical specifications

Туре	16A-F	24A(B)-F	16A-G	24A(B)-G
Real time	Three-phase pl	nase voltage,	Single phase	e line voltage

measurement	three-phase lin	ie voltage				
	Three phase cu	irrent	Single phase	e current		
	Three-phase ad	ctive power,	Tatal active records			
	total active pov	wer	lotal active	power		
	Three-phase re	active power,	-			
	total reactive p	ower	TOTALLEACTIV	e power		
	Three-phase ap	oparent power,	Total appare	nt nowor		
	total apparent	power	iotal appaie	ent power		
	Three-phase po	ower factor ,	total nower	factor		
	total power fac	tor		lactor		
	Frequency, tem	nperature	Frequency, t	emperature		
Harmonic	1_31ct					
measurement	1 5150					
Wiring	3P	24W	1P2W			
Control loops	16	24	16	24		
Drive way		A: Static B: Dynamic				
Compensation	Total compens	ation and phase	Total co	monsation		
mode	compe	ensation		mpensation		
Control strategy	Cyclic switching	g, steady-state cyc	ling			
Event record	50 records					
	2-way program	mable relay outp	ut			
	Contact capaci	ty AC250V/3A DC3	30V/3A			
Temperature	NTC temperatu	ire transducer 3m				
Communication	1* RS485 M0D	BUS-RTU				
U disk function	Optional U disk	export measurer	nent data fun	ction		
Display mode	5-inch TFT toud	ch screen				

Note: The above product functions are the default optional function of the company, and customers can negotiate with the Marketing Department for special needs.

1.4 Outline structure

Front view:

А	Display
В	Housing
С	Button
D	USB
Е	Power supply terminal
F	Wiring terminal
G	Bracket
Н	Optional WIFI/4Gmodule
Outline dimension (l×h)	144×144(mm)
Hole size (s×y)	138×138(mm)

2. Installation and wiring

The controller design can be used for panel mounting (the hole size is 138 * 138mm). Use a screwdriver to operate and fix bracket according to the following steps:

1) Drill a 138 x 138mm hole in the fixed electrical cabinet;

2) Remove the controller;

3) The controller shall be installed into the mounting hole from the front;

4) Insert the fixing bracket of the controller, and tighten the screws to fix the controller.

605 series terminals are uniformly numbered as follows:

Power supply	1, 2	AC/DC80~270V			
		4,6,8 is the three-phase current			
Current signal	456700	incoming line end			
	4,5,0,7,8,9	5,7,9 is the three-phase current			
		outgoing terminal			
Voltage signal	11,12,13,14	Three-phase voltage input, A,B,C,N			
Control output	21~44	16/24 loops control output			
		Corresponding to the dynamic			
+12V	20	control public end			
		Corresponding to the static control			
СОМ	80	public end			
1*RS485	58,59,60	A+、 B- 、G			
		Two-way relay output(81,82) and			
Alarm output	81~84	(83,84)			
NTC Temperature					
sensing	61, 62				

Note:

a. 1 and 2 are auxiliary power supplies for instrument operation, with a maximum power supply voltage of AC/DC80-270V. Please ensure that the power supply is suitable for this series of products to prevent damage to the products.

b. 4, 6, and 8 are the incoming terminals of the current transformer, with * indicating the incoming terminals of the current.

c. For detailed use of wiring terminals, please connect according to the wiring diagram on the specific product casing.

d. When using the one phase two wire connection method, the corresponding current signal Ia is connected to (4, 5), the corresponding voltage signal Uc is connected to 13, and Ub is connected to 14.

Total compensation (1P2W)Static wiring diagram

Total compensation and phase compensation (3P4W) Static wiring diagram

3. Menu

3.1 Home page

The controller is equipped with a 5-inch color capacitive touch screen and four manual switching physical buttons. Under normal operation, touch operation between screens can be used to switch between different menus, but during operating system settings, to prevent unintentional modifications, password 0001 will be required for access.

Switching indication: The current control circuit status can be viewed.

Data measurement: Conventional electrical parameter measurement values can be viewed.

Harmonics: The total harmonic content and fractional 2-31 content of voltage and current can be viewed.

Data export: You can insert a USB drive to export data. (Optional function, default none)

Protection output: Two alarm output states can be viewed.

Event recording: 50 events were recorded, recording protection events.

Settings: Entering the programming state allows for parameter settings on the controller, such as current to current ratio.

Version information: System information and software version.

3.2 Manual switching

Under the "Switching Indication" menu, press the "Manual/Automatic" button to switch between manual and automatic modes. In manual mode, a yellow selection underline appears. Press the "Select" key to move the underline to select the specific number of paths, and then press "Cut" to achieve manual cutting or "On" to achieve manual switching. Red indicates that this route has been put into operation, while green indicates that this route has been cut off.

3.3 Data measurement

Measurement and display of conventional electricity quantity, including grid voltage, grid current, grid frequency, cabinet temperature, active power, reactive power, apparent power, and power factor.

	Current IA 716.4A	Phase voltage UAN 228.1V
· · · · ·	IB 716.5A	UBN 227.9V
•	IC 716.4A	UCN 228.4V
	Line voltage UAB 380.1V	Frequency 49.99Hz
	UBC 380.9V	Temperature
	UCA 381.7V	23.2℃

	Active power PA 158.13kW	Reactive power QA 46.08kvar
	PB 158.07kW	QB 46.37kvar
	PC 159.33kW	QC 46.27kvar
	PΣ 475.53kW	QΣ 138.72kvar
	Apparent power	
	SA 163.28kVA	SC 163.76kVA
()	SB 164.19kVA	SΣ 491.23kVA

	Powe	r factor			
2	PFA	0.963	PFC	0.968	
	PFB	0.961	ΡΕΣ	0.964	

3.4 Harmonic

Total harmonic content of the voltage and current.

THD overv	view-%		
THDU_A	2.3%	THDI_A	18.1%
THDU_B	2.3%	THDI_B	17.7%
THDU_C	2.5%	THDI_C	18.9%

The bar chart shows the harmonic content of the split current from 2 to 31.

3.5 Data export

When selecting the USB flash drive function, the maximum, minimum, and average values of conventional electrical parameters for the past three months can be exported.

3.6 Event record

Record 50 protection events.

3.7 Programming menu

(1) Enter programming state:

Return to the main menu of the system, select the "Parameter Settings" option in the main menu, and press the "Confirm" button to enter the password authentication selection page. Enter the user password

authentication page, enter the correct password, and then enter the programming status page (default user input password is "0001"). Note: If the page does not act after entering the password, it indicates that the password was entered incorrectly.

(2) Exit programming status:

The changes to parameter settings will be automatically saved. When you have returned to the first level menu of the programming interface, simply

press the "Home^O" button on the LCD panel.

3.7.1 Programming menu interface

Optional general settings (including wiring settings, communication settings, and time settings), protection settings (including settings for various protection functions), alarm settings, switching settings, and capacitor settings.

Programming menu interface

3.7.2 Programming menu operations

1) Regular Setting

External transformer ratio, wiring method, time, and event reset can be set. Set communication parameters, one communication line can be set, with instrument address range of 1-247 and baud rate of 480096001920038400; The data formats are N81, N82, E81, and O81 (with no parity, even parity, and odd parity, respectively), and the communication protocol is standard Modbus-RTU. The communication address table is shown in the appendix.

2) Protection Setting

Two types of protection can be enabled or disabled, one is voltage protection, and the other is harmonic protection. Voltage protection is divided into undervoltage protection and overvoltage protection, while harmonic protection is divided into harmonic voltage protection (THDu%) and harmonic current protection (THDi%).

Voltage protection can be directly selected as "enable" or "disable" to enable or shield protection.

Note: The protection voltage is set for phase voltage under three-phase four wire (- F), and for line voltage under one phase two wire (- G).

For example, the wiring method is three-phase four wire (- F):

1. Select "Enable" for voltage protection, set the undervoltage to 180V. When the measured phase voltage is less than 180V, enter the voltage protection, with a return difference of 8V.

2. Select "Enable" for voltage protection, and set the overvoltage to 250V. When the measured phase voltage is greater than 250V, enter the voltage protection with a return difference of 8V.

The setting value of harmonic protection is set to "0" to indicate protection shielding, and not set to "0" to indicate entering protection.

For example:

Setting THDu% to "0" indicates harmonic voltage protection shielding.

2. Set THDu% to 5%, and when the measured THDu% is greater than 5%, enter harmonic voltage protection.

3. The setting principle of harmonic current protection (THDi%) refers to harmonic voltage protection (THDu%).

3) Alarm settings and protection output

15

Alarm setting			
Alarm1 categroy	нібн 🔻	Alarm1 categroy	нібн 🔻
Alarm1 item	0	Alarm1 item	0
Alarm1 delay	5	Alarm1 delay	5
Alarm1 value	3000	Alarm1 value	3000
\odot			
-			

Alarm 1 and Alarm 2 represent the alarm outputs of the first and second channels, respectively. A high alarm indicates an alarm above the set value, and a low alarm indicates an alarm below the set value; When the project value is 0 and com is selected, it indicates that the alarm output is turned off and changed to remote control relay output (note that remote control output can only be set when the type is set to com). At this time, it is also necessary to set a set value, where the set value is a secondary value and the default delay is 5S. Please refer to the table below for the comparison of project values and names.

No	ltem	Descrip	Data	No	Item	Descriptio	Data
		tion				n	
0	СОМ	Close		18	RAM_SA		
		the					
		alarm				apparent	xxxx
1	RAM_IA		X XXX	19	RAM_SB	power	VA
2	RAM_IB	Current	X.XXX	20	RAM_SC		
3	RAM_IC		A	21	RAM_SZ		
4	RAM_UAN	Dhasa		22	RAM_PHASEA		
5	RAM_UBN	Phase	XXX.X	23	RAM_PHASEB	factor	xx. xx
6	RAM_UCN	voitage	v	24	RAM_PHASEC	Tactor	

7	RAM_UAB			25	RAM_PHASEZ		
8	RAM_UBC	Line	xxx.x	26	RAM_FREQ	Frequency	Hz
9	RAM_UCA	voltage	V	27	RAM_NTC1	Temperat	XXX.X
						ure	°C
10	RAM_PA			28	RAM_UA_THD		
11	RAM_PB	Active	xxxx	29	RAM_UB_THD	harmonic	XXX.X %
12	RAM_PC	power	W	30	RAM_UC_THD	voltage	
13	RAM_PZ			31	RAM_IA_THD		
14	RAM_QA			32	RAM_IB_THD	harmonic	۸۸۸.۸
15	RAM_QB	Reactiv	xxxx	33	RAM_IC_THD	current	70
16	RAM_QC	e power	var				
17	RAM_QZ						

Example 1: Require an alarm for phase A overvoltage of 280.0V, set the alarm item to "4", and set the value to "2800".

Example 2: An alarm is required for phase A overcurrent of 400.0A, with a CT ratio of 200. Set the alarm item to "1" and the set value to "2000".

Example 3: If a fan is required to operate at a temperature exceeding 40 degrees Celsius, the alarm item can be set to "27" and the set value to "0400".

After the above settings are completed, if an alarm occurs in the associated project, it can be seen in the "Protection Output".

4) Switching setting

Target power factor: refers to the setting of the target power factor, with a value range of 0.500 to 1.000;

Switching threshold: refers to the sensitivity of controlling switching. The lower the value, the easier it is to switch, with a value range of 0.5 to 1.2;

Switching delay: refers to the time interval between switching actions, with a value range of 0.1 to 999.9 seconds;

PF constant value: refers to setting the target power factor, with a value range of $0.500^{-1.000}$;

Returning delay: refers to the interval time allowed for the capacitor to be switched back on after being cut off, with a value range of 1-60min.

Steady state cycle enable: The steady state cycle function enable refers to the ability of modules of the same capacity to be recycled after the system stabilizes (as shown in the figure below), improving the overall service life of the system.

Steady state cycle time: Delay unit minute, with a value range of 1-90 minutes.

Total compensation loop

Phase compensation loop

* Phase compensation is start from NO.1 loop, total compensation is after phase compensation!

For example, 2 loops phase compensation, and 4 loops total compensation:

- 01: Phase A compensation 1
- 02: Phase B compensation 1
- 03: Phase C compensation 1
- 04: Phase A compensation 2
- 05: Phase B compensation 2
- 06: Phase C compensation 2
- 07: Three phase total compensation
- 08: Three phase total compensation
- 09: Three phase total compensation
- 10: Three phase total compensation

Total loops = total compensation loops + phase compensation loops×3,

Total loops should \leq 16 (16A) or 24(24A/B);

5) Capacitive settings

apacitor set	ting			
CAP 1	30kvar		CAP 6	30kvar
CAP 2	30kvar	÷	CAP 7	30kvar
CAP 3	30kvar		CAP 8	30kvar
CAP 4	30kvar		CAP 9	30kvar
CAP 5	30kvar		CAP 10	30kvar

pacitor sett	ing		
CAP 11	30kvar	CAP 16	30kvar
			/
CAP 12	30kvar	CAP 17	30kvar
		-	
CAP 13	30kvar	CAP 18	30kvar
CAP 14	30kvar	CAP 19	30kvar
			1
CAP 15	30kvar	CAP 20	30kvar
	,		

Capacitor settin	g	
CAP 21	30kvar	
CAP 22	30kvar	
CAP 23	30kvar	
CAP 24	30kvar	
ATT COEF	0.9	
\odot		

Capacitance setting: Set the compensation capacity of each circuit according to the actual system configuration, with a range of 0-900kvar. Attenuation coefficient: Setting this value after the capacitor has been running for a period of time can provide compensation accuracy.

Address		D /\\/	format	Data	Name	Description		
HEX	DEC	K/ VV	Ionnat	Dala	Name	Description		
0x1	1	R	int	D*1	RAM_DO1_ST	Open		
0x2	2	R	int	D*1	RAM_CON_ST1	1-16 Relay output status		
02	2	R	int	D*1	DAM CON STO	17-24 Relay output		
0x5	5			D.T		status		
0x4	4	R	int	D*0.001	RAM_IA	I _A		
0x5	5	R	int	D*0.001	RAM_IB	I _B		
0x6	6	R	int	D*0.001	RAM_IC	Ic		
0x7	7	R	int	D*0.1	RAM_UAN	U _A		
0x8	8	R	int	D*0.1	RAM_UBN	U _B		
0x9	9	R	int	D*0.1	RAM_UCN	Uc		

Appendix MODBUS-RTU

0xA	10	R	int	D*0.1	RAM_UAB	U _{AB}			
0xB	11	R	int	D*0.1	RAM_UBC	U _{BC}			
0xC	12	R	int	D*0.1	RAM_UCA	U _{CA}			
0xD	13	R	int	D*1	RAM_PA	P _A			
0xE	14	R	int	D*1	RAM_PB	P _B			
0xF	15	R	int	D*1	RAM_PC	P _C			
0x10	16	R	int	D*1	RAM_PZ	Total active power			
0x11	17	R	int	D*1	RAM_QA	Q _A			
0x12	18	R	int	D*1	RAM_QB	Q _B			
0x13	19	R	int	D*1	RAM_QC	Q _C			
0x14	20	R	int	D*1	RAM_QZ	Total reactive power			
0x15	21	R	int	D*1	RAM_SA	SA			
0x16	22	R	int	D*1	RAM_SB	S _B			
0x17	23	R	int	D*1	RAM_SC	Sc			
0x18	24	R	int	D*1	RAM_SZ	Total apparent power			
0x19	25	R	int	D*0.001	RAM_PHASEA	PF _A			
0x1A	26	R	int	D*0.001	RAM_PHASEB	PF _B			
0x1B	27	R	int	D*0.001	RAM_PHASEC	PF _C			
0x1C	28	R	int	D*0.001	RAM_PHASEZ	Total power factor			
0x1D	29	R	int	D*0.01	RAM_FREQ	Frequency			
0x1E	30	R	int	D*0.1	RAM_NTC1	Temperature			
0x2E	46	R	int	D*1	RAM_SYS	System running state			
0x2F	47	R	int	D*0.1	RAM_UA_THD	Phase A voltage total harmonic content			
0x30	48	R	int	D*0.1	RAM_UA_TH01	Phase A voltage 1st harmonic content			
0x31	49	R	int	D*0.1	RAM_UA_TH02	Phase A voltage 2nd harmonic content			
0x32	50	R	int	D*0.1	RAM_UA_TH03	Phase A voltage 3rd			
L									

						harmonic content				
0,22	E 1	D	int	D*0 1		Phase A voltage 4th				
0x55	51	ĸ	IIIL	D'0.1	KAIM_UA_THU4	harmonic content				
0v3/	52	P	int	ר*0 1		Phase A voltage 5th				
0734	52	n	IIIC	0.1	RAM_OA_11105	harmonic content				
0v25	52	P	int	ר*0 1		Phase A voltage 6th				
0,33				0.1		harmonic content				
0x36	54	R	int	D*0.1 RAM_UA_TH07	RAM LIA THO7	Phase A voltage 7th				
0,30		<u> </u>			harmonic content					
0x37	55	R	int	D*0.1	RAM UA TH08	Phase A voltage 8th				
				0.1		harmonic content				
0x38 56	56	6 B	? int	D*0.1	RAM UA TH09	Phase A voltage 9th				
						harmonic content				
0x39 57	57	R	int	D*0.1	RAM UA TH10	Phase A voltage 10th				
						harmonic content				
0x3A	58	R	int	D*0.1	RAM UA TH11	Phase A voltage 11th				
						harmonic content				
0x3B	59	9 R	int	D*0.1	RAM UA TH12	Phase A voltage 12th				
						harmonic content				
0x3C	60	50 R	R int	D*0.1	RAM UA TH13	Phase A voltage 13th				
						harmonic content				
0x3D	61	R	int	D*0.1	RAM UA TH14	Phase A voltage 14th				
						harmonic content				
0x3E	62	R	int	D*0.1	RAM UA TH15	Phase A voltage 15th				
						harmonic content				
0x3F	63	R	int	D*0.1	RAM UA TH16	Phase A voltage 16th				
			_			harmonic content				
0x40	64	R	int	D*0.1	RAM UA TH17	Phase A voltage 17th				
						harmonic content				
0x41 65	65	55 R	R int	D*0.1	RAM UA TH18	Phase A voltage 18th				
					harmonic content					

0x42	66	R	int	D*0.1	RAM_UA_TH19	Phase A voltage 19th harmonic content
0x43	67	R	int	D*0.1	RAM_UA_TH20	Phase A voltage 20th harmonic content
0x44	68	R	int	D*0.1	RAM_UA_TH21	Phase A voltage 21st harmonic content
0x45	69	R	int	D*0.1	RAM_UA_TH22	Phase A voltage 22 nd harmonic content
0x46	70	R	int	D*0.1	RAM_UA_TH23	Phase A voltage 23rd
0x47	71	R	int	D*0.1	RAM_UA_TH24	Phase A voltage 24th
0x48	72	R	int	D*0.1	RAM_UA_TH25	Phase A voltage 25th
0x49	73	R	int	D*0.1	RAM_UA_TH26	Phase A voltage 26th
0x4A	74	R	int	D*0.1	RAM_UA_TH27	Phase A voltage 27 th
0x4B	75	R	int	D*0.1	RAM_UA_TH28	Phase A voltage 28 th
0x4C	76	R	int	D*0.1	RAM_UA_TH29	Phase A voltage 29 th
0x4D	77	R	int	D*0.1	RAM_UA_TH30	Phase A voltage 30 th
0x4E	78	R	int	D*0.1	RAM_UA_TH31	Phase A voltage 31st
0x4F	79	R	int	D*0.1	RAM_UB_THD	Phase B voltage total
0x50	80	R	int	D*0.1	RAM_UB_TH01	Phase B voltage 1st
0x51	81	R	int	D*0.1	RAM_UB_TH02	Phase B voltage 2nd

						harmo	harmonic content			
0,45.2	07		int	D*0 1		Phase	В	voltage	3rd	
0x52	82	к	Int	D'0.1	KAIVI_UB_THU3	harmo	harmonic content			
0.45.2	02	D	int	D*0.1		Phase	В	voltage	4th	
0x55	05	n	IIIC			harmo	nic	content		
0.251	Q /	D	int	ר*ח 1		Phase	В	voltage	5th	
0734	04	n	int	0.1		harmo	nic	content		
0~55	85	P	int	D*0 1	RAM UB THOS	Phase	В	voltage	6th	
0733	05	ľ.	int	0.1		harmo	nic	content		
0x56	86	R	int	D*0 1	RAM UB THO7	Phase	В	voltage	7th	
				0.1		harmonic content				
0v57 87	87	7 P	int	D*0 1	RAM LIB THOS	Phase	В	voltage	8th	
0,57				0.1		harmonic content				
0v58 88	88	R	int	D*0 1	RAM UB TH09	Phase	В	voltage	9th	
0,30		<u> </u>		0.1		harmo	nic	content		
0x59	89	R	int	D*0.1	RAM UB TH10	Phase	В	voltage	10th	
				5 0.1		harmo	nic	content		
0x5A	90	90 R	int	D*0.1	RAM UB TH11	Phase	В	voltage	11th	
						harmo	nic	content		
0x5B	91)1 R	? int	D*0 1	RAM UB TH12	Phase	В	voltage	12th	
						harmo	nic	content		
0x5C	92	R	int	D*0.1	RAM UB TH13	Phase	В	voltage	13th	
						harmo	nic	content		
0x5D	93	R	int	D*0.1	RAM UB TH14	Phase	В	voltage	14th	
						harmo	nic	content		
0x5E	94	R	int	D*0.1	RAM UB TH15	Phase	В	voltage	15th	
						harmo	nic	content		
0x5F	95	R	int	D*0.1	RAM UB TH16	Phase	В	voltage	16th	
						harmo	nic	content		
0x60 96	96	96 R int	int	D*0.1	RAM_UB_TH17	Phase	В	voltage	17th	
						harmo	nic	content		

0x61	97	R	int	D*0.1	RAM_UB_TH18	Phase B voltage 18th harmonic content
0x62	98	R	int	D*0.1	RAM_UB_TH19	Phase B voltage 19th harmonic content
0x63	99	R	int	D*0.1	RAM_UB_TH20	Phase B voltage 20th harmonic content
0x64	100	R	int	D*0.1	RAM_UB_TH21	Phase B voltage 21st
0x65	101	R	int	D*0.1	RAM_UB_TH22	Phase B voltage 22 nd
0x66	102	R	int	D*0.1	RAM_UB_TH23	Phase B voltage 23rd
0x67	103	R	int	D*0.1	RAM_UB_TH24	Phase B voltage 24th
0x68	104	R	int	D*0.1	RAM_UB_TH25	Phase B voltage 25th
0x69	105	R	int	D*0.1	RAM_UB_TH26	Phase B voltage 26th
0x6A	106	R	int	D*0.1	RAM_UB_TH27	Phase B voltage 27 th
0x6B	107	R	int	D*0.1	RAM_UB_TH28	Phase B voltage 28 th
0x6C	108	R	int	D*0.1	RAM_UB_TH29	Phase B voltage 29 th
0x6D	109	R	int	D*0.1	RAM_UB_TH30	Phase B voltage 30 th
0x6E	110	R	int	D*0.1	RAM_UB_TH31	Phase B voltage 31st
0x6F	111	R	int	D*0.1	RAM_UC_THD	Phase C voltage total
0x70	112	R	int	D*0.1	RAM_UC_TH01	Phase C voltage 1st

						harmonic content			
0.71	112	D	int	D*0 1		Phase C voltage 2	nd		
0271	115	ĸ	Int	0.1	KAIVI_UC_THUZ	harmonic content			
0v72	111	P	int	D*0.1		Phase C voltage 3	3rd		
0772	114	n				harmonic content			
0v73	115	P	int	D*0 1		Phase C voltage 4	4th		
0.7.5	115	ľ.		0.1		harmonic content			
0.71	116	P	int	D*0 1		Phase C voltage 5	5th		
0,74	110	ľ.		0.1		harmonic content			
0v75	117	R	int	D*0 1	RAM UC THOS	Phase C voltage 6	6th		
0.75	11/	ľ.		0.1		harmonic content			
0v76 118	о р	D int	ח*0 1		Phase C voltage	7th			
0.70	110			0.1		harmonic content			
0v77 110	R	int	D*0 1	RAM UC TH08	Phase C voltage 8	8th			
				0.1		harmonic content			
0.78 120	120	0 R	int	D*0.1	RAM UC TH09	Phase C voltage S	9th		
	120			0.1		harmonic content			
0x79	121	21 R	int	D*0 1	RAM UC TH10	Phase C voltage 10	Oth		
		<u> </u>				harmonic content			
0x7A	122	22 R	R int	ח*ח 1	RAM UC TH11	Phase C voltage 11	1th		
		Ľ		0.1		harmonic content			
0x7B	123	R	int	D*0 1	RAM UC TH12	Phase C voltage 12	2th		
	125	Ľ		0.1		harmonic content			
0x7C	124	R	int	D*0 1	RAM UC TH13	Phase C voltage 13	3th		
		<u> </u>				harmonic content			
0x7D	125	R	int	D*0 1	RAM UC TH14	Phase C voltage 14	4th		
		Ľ				harmonic content			
0x7F	126	R	int	D*0.1	RAM_UC_TH15	Phase C voltage 15	5th		
						harmonic content			
0x7F	127	27 R i	int [D*0.1	RAM_UC_TH16	Phase C voltage 16	6th		
UX/F 12/						harmonic content			

0x80	128	R	int	D*0.1	RAM_UC_TH17	Phase C voltage 17th harmonic content
0x81	129	R	int	D*0.1	RAM_UC_TH18	Phase C voltage 18th harmonic content
0x82	130	R	int	D*0.1	RAM_UC_TH19	Phase C voltage 19th harmonic content
0x83	131	R	int	D*0.1	RAM_UC_TH20	Phase C voltage 20th harmonic content
0x84	132	R	int	D*0.1	RAM_UC_TH21	Phase C voltage 21st harmonic content
0x85	133	R	int	D*0.1	RAM_UC_TH22	Phase C voltage 22 nd harmonic content
0x86	134	R	int	D*0.1	RAM_UC_TH23	Phase C voltage 23rd harmonic content
0x87	135	R	int	D*0.1	RAM_UC_TH24	Phase C voltage 24th harmonic content
0x88	136	R	int	D*0.1	RAM_UC_TH25	Phase C voltage 25th harmonic content
0x89	137	R	int	D*0.1	RAM_UC_TH26	Phase C voltage 26th harmonic content
0x8A	138	R	int	D*0.1	RAM_UC_TH27	Phase C voltage 27 th harmonic content
0x8B	139	R	int	D*0.1	RAM_UC_TH28	Phase C voltage 28 th harmonic content
0x8C	140	R	int	D*0.1	RAM_UC_TH29	Phase C voltage 29 th harmonic content
0x8D	141	R	int	D*0.1	RAM_UC_TH30	Phase C voltage 30 th harmonic content
0x8E	142	R	int	D*0.1	RAM_UC_TH31	Phase C voltage 31st harmonic content
0x8F	143	R	int	D*0.1	RAM_IA_THD	Phase A current total

						harmon	ic c	ontent	
0,00	144	D	int	D*0 1		Phase	А	current	1st
0,290	144	ĸ	Int	D*0.1		harmonic content			
0v01	1/15	P	int	D*0 1		Phase	А	current	2nd
0731	145	n		0.1		harmon	ic c	ontent	
مرمر	146	P	int	D*0 1		Phase	А	current	3rd
0,52	140	ľ.		0.1		harmon	ic c	ontent	
0x93	147	R	int	D*0 1	βανιά τηθα	Phase	А	current	4th
0,55	14/			0.1		harmon	ic c	ontent	
0x94	148	R	int	D*0 1	RAM IA THOS	Phase	А	current	5th
	110	<u> </u>		0.1		harmon	ic c	ontent	
0v95 1/19	a p	int	D*0.1	RAM IA THO6	Phase	А	current	6th	
		Ľ.		0.1		harmon			
0x96 150	R	int	D*0.1	RAM IA TH07	Phase	А	current	7th	
						harmon	ic c	ontent	
0x97	151	R	int	D*0.1	RAM IA TH08	Phase	A	current	8th
						harmon	ic c	ontent	
0x98	152	2 R	R int	D*0.1	RAM IA TH09	Phase	A	current	9th
						harmon	ic c	ontent	
0x99	153	3 R	R int	D*0 1	RAM IA TH10	Phase	A	current	10th
						harmonic content			
0x9A	154	R	int	D*0.1	RAM IA TH11	Phase	A	current	11th
						harmon	ic c	ontent	
0x9B	155	R	int	D*0.1	RAM IA TH12	Phase	A	current	12th
						harmon	ic c	ontent	
0x9C	156	R	int	D*0.1	RAM IA TH13	Phase	A	current	13th
						harmon	ic c	ontent	
0x9D	157	R	int	D*0.1	RAM IA TH14	Phase	A	current	14th
						harmon	ic c	ontent	
0x9E 158	158	R	R int	D*0.1	RAM IA TH15	Phase	A	current	15th
					harmon	ic c	ontent		

0x9F	159	R	int	D*0.1	RAM_IA_TH16	Phase A current 16th harmonic content
0xA0	160	R	int	D*0.1	RAM_IA_TH17	Phase A current 17th harmonic content
0xA1	161	R	int	D*0.1	RAM_IA_TH18	Phase A current 18th harmonic content
0xA2	162	R	int	D*0.1	RAM_IA_TH19	Phase A current 19th
0xA3	163	R	int	D*0.1	RAM_IA_TH20	Phase A current 20th
0xA4	164	R	int	D*0.1	RAM_IA_TH21	Phase A current 21st
0xA5	165	R	int	D*0.1	RAM_IA_TH22	Phase A current 22nd
0xA6	166	R	int	D*0.1	RAM_IA_TH23	Phase A current 23rd
0xA7	167	R	int	D*0.1	RAM_IA_TH24	Phase A current 24th
0xA8	168	R	int	D*0.1	RAM_IA_TH25	Phase A current 25th
0xA9	169	R	int	D*0.1	RAM_IA_TH26	Phase A current 26th
0xAA	170	R	int	D*0.1	RAM_IA_TH27	Phase A current 27th
0xAB	171	R	int	D*0.1	RAM_IA_TH28	Phase A current 28th
0xAC	172	R	int	D*0.1	RAM_IA_TH29	Phase A current 29th harmonic content
0xAD	173	R	int	D*0.1	RAM_IA_TH30	Phase A current 30th
0xAE	174	R	int	D*0.1	RAM_IA_TH31	Phase A current 31th

						harmo	nic	content	
0	475	_	:t	D*0.1		Phase	В	current	total
UXAF	1/5	ĸ	Int		KAIVI_IB_IHD	harmo	nic	content	
	170	D	int	D*0.1		Phase	В	current	1st
UXBU	1/6	к	int		RAIVI_IB_THUT	harmo	nic	content	
0vD1	177	D	int	D*0 1		Phase	В	current	2nd
UXBI	1//	ĸ	Int	0.1	KAIVI_IB_I HUZ	harmo	nic	content	
0,000	170	D	int	D*0 1		Phase	В	current	3rd
ОХБД	1/8	ĸ	Int	0.1	KAIVI_ID_I HUS	harmo	nic	content	
0,40.2	170	D	int	D*0 1		Phase	В	current	4th
UXDS	1/9	n	IIIL	0.1		harmo	nic	content	
	100	D	int	D*0 1		Phase	В	current	5th
0864	100	n	IIIC	0.1	KAIVI_IB_I HUS	harmo	nic	content	
	101	D	int	D*0.1	RAM_IB_TH06	Phase	В	current	6th
	UXB5 181 K	n				harmo	nic	content	
0,006 192 0	R	int	D*0 1	RAM IB THOT	Phase	В	current	7th	
	102	IN .		0.1		harmo	nic	content	
0vB7 183 P	R	int	D*0 1	RAM IB TH08	Phase	В	current	8th	
	105			harmo	nic	content			
	R	int	D*0 1	RAM IB THO9	Phase	В	current	9th	
	104			0.1		harmo	nic	content	
0v89	185	R	int	D*0.1	RAM_IB_TH10	Phase	В	current	10th
	105	ľ,				harmo	nic	content	
ΟχΒΑ	186	R	int	D*0 1	RAM IB TH11	Phase	В	current	11th
	100			0.1		harmo	nic	content	
0xBB	187	R	int	D*0 1	RAM IB TH12	Phase	В	current	12th
	10,	ľ.		0.1		harmo	nic	content	
0xBC	188	R	int	D*0.1	RAM_IB_TH13	Phase	В	current	13th
		<u> </u>				harmo	nic	content	
0xBD	189	R	int	D*0 1	RAM IR TH14	Phase	В	current	14th
OXRD 188	n		0.1		harmo	nic	content		

OxBE	190	R	int	D*0.1	RAM_IB_TH15	Phase B current 15th harmonic content
0xBF	191	R	int	D*0.1	RAM_IB_TH16	Phase B current 16th harmonic content
0xC0	192	R	int	D*0.1	RAM_IB_TH17	Phase B current 17th
0xC1	193	R	int	D*0.1	RAM_IB_TH18	Phase B current 18th
0xC2	194	R	int	D*0.1	RAM_IB_TH19	Phase B current 19th
0xC3	195	R	int	D*0.1	RAM_IB_TH20	Phase B current 20th
0xC4	196	R	int	D*0.1	RAM_IB_TH21	Phase B current 21st
0xC5	197	R	int	D*0.1	RAM_IB_TH22	Phase B current 22nd
0xC6	198	R	int	D*0.1	RAM_IB_TH23	Phase B current 23rd
0xC7	199	R	int	D*0.1	RAM_IB_TH24	Phase B current 24th
0xC8	200	R	int	D*0.1	RAM IB TH25	Phase B current 25th
0xC9	201	R	int	D*0.1	RAM IB TH26	harmonic content Phase B current 26th
0xCA	202	R	int	D*0.1	RAM IB TH27	harmonic content Phase B current 27th
0xCB	203	R	int	D*0.1	RAM IB TH28	harmonic content Phase B current 28th
	204	D	int	D*0.1		harmonic content Phase B current 29th
0xCD	204	R	int	D*0.1	RAM_IB_TH30	harmonic content Phase B current 30th

						harmonic content
OVCE	200	_	int	D*0.1	RAM_IB_TH31	Phase B current 31th
UXCE	206	к				harmonic content
	207	D	int	D*0 1		Phase C current total
UXCF	207		IIIL	D*0.1	KAIM_IC_I HD	harmonic content
	208	D	int	D*0 1		Phase C current 1st
	200	n		D'0.1		harmonic content
0ע1	209	R	int	1 0*0	RAM IC THO2	Phase C current 2nd
	205			0.1		harmonic content
0vD2	210	R	int	D*0 1	RAM IC THOS	Phase C current 3rd
	210			0.1		harmonic content
0xD3	211	R	int	D*0 1	RAM_IC_TH04	Phase C current 4th
				0.1		harmonic content
0xD4	212	R	R int	D*0 1	RAM IC THOS	Phase C current 5th
	<u> </u>		0.1		harmonic content	
0xD5 213	R	int	D*0.1	RAM IC THO6	Phase C current 6th	
						harmonic content
0xD6 214 B	R	int	D*0.1	RAM IC TH07	Phase C current 7th	
						harmonic content
0xD7	215	R	int	D*0.1	RAM IC TH08	Phase C current 8th
						harmonic content
0xD8	216	R	int	D*0 1	RAM IC THO9	Phase C current 9th
						harmonic content
0xD9	217	R	int	D*0.1	RAM IC TH10	Phase C current 10th
						harmonic content
0xDA	218	R	int	D*0.1	RAM IC TH11	Phase C current 11th
						harmonic content
0xDB	219	R	int	D*0.1	RAM_IC_TH12	Phase C current 12th
						harmonic content
0xDC	220	R	int	D*0.1	RAM IC TH13	Phase C current 13th
					harmonic content	

0xDD	221	R	int	D*0.1	RAM_IC_TH14	Phase C current 14th harmonic content
0xDE	222	R	int	D*0.1	RAM_IC_TH15	Phase C current 15th harmonic content
0xDF	223	R	int	D*0.1	RAM_IC_TH16	Phase C current 16th harmonic content
0xE0	224	R	int	D*0.1	RAM_IC_TH17	Phase C current 17th
0xE1	225	R	int	D*0.1	RAM_IC_TH18	Phase C current 18th
0xE2	226	R	int	D*0.1	RAM_IC_TH19	Phase C current 19th
0xE3	227	R	int	D*0.1	RAM_IC_TH20	Phase C current 20th
0xE4	228	R	int	D*0.1	RAM_IC_TH21	Phase C current 21st
0xE5	229	R	int	D*0.1	RAM_IC_TH22	Phase C current 22nd
0xE6	230	R	int	D*0.1	RAM_IC_TH23	Phase C current 23rd
0xE7	231	R	int	D*0.1	RAM_IC_TH24	Phase C current 24th
0xE8	232	R	int	D*0.1	RAM_IC_TH25	Phase C current 25th
0xE9	233	R	int	D*0.1	RAM_IC_TH26	Phase C current 26th
0xEA	234	R	int	D*0.1	RAM_IC_TH27	Phase C current 27th
0xEB	235	R	int	D*0.1	RAM_IC_TH28	Phase C current 28th
0xEC	236	R	int	D*0.1	RAM_IC_TH29	Phase C current 29th

						harmonic content
0xED	237	R	int	D*0.1	RAM_IC_TH30	Phase C current 30th harmonic content
OxEE	238		int	D*0.1	RAM_IC_TH31	Phase C current 31th harmonic content
0xF2	242	R/W	int	D*1	COMM_ADDR	External communication address
0xF3	243	R/W	int	D*1	COMM_BAUD	External communication baud rate
0xF4	244	R/W	int	D*1	COMM_DATA	External communication data format
0xF5	245	R/W	int	D*1	CT_MULT	CT ratio of incoming cabinet
0xF7	247	R/W	int	D*1	ALM1_HL	Alarm 1 type
0xF8	248	R/W	int	D*1	ALM1_SET	Alarm 1 item
0xF9	249	R/W	int	D*1	ALM1_VALUE	Alarm 1 value
0xFA	250	R/W	int	D*1	ALM1_DELAY	Alarm 1 delay
OxFB	251	R/W	int	D*1	ALM2_HL	Alarm 2 type
0xFC	252	R/W	int	D*1	ALM2_SET	Alarm 2 item
0xFD	253	R/W	int	D*1	ALM2_VALUE	Alarm 2 value
0xFE	254	R/W	int	D*1	ALM2_DELAY	Alarm 2 delay
0xFF	255	R/W	int	D*1	SET_YEAR_MON TH	Time year month
0x100	256	R/W	int	D*1	SET_DAY_HOUR	Time date hour
0x101	257	R/W	int	D*1	SET_MIN_SEC	Time minute second
0x102	258	R/W	int	D*0.1	TQMX_SET	Switching threshold limit
0x103	259	R/W	int	D*0.1	TQ_YS	Switching delay
0x104	260	R/W	int	D*0.001	PH_SET	Target power factor

0x105	261	R/W	int	D*1	CYC_EN	Steady-state cyclic enabling
0x106	262	R/W	int	D*1	CTL_CYC	Steady-state cycle time
0x107	263	R/W	int	D*1	ZTYS	Re-switch delay
0x108	264	R/W	int	D*1	CONC_K	Capacitance attenuation coefficient
0x109	265	R/W	int	D*1	P_U_EN	Voltage protection
0x10A	266	R/W	int	D*1	P_U_MIN	low-voltage protection
0x10B	267	R/W	int	D*1	P_U_MAX	over-voltage protection
0x10C	268	R/W	int	D*1	P_THD_IMAX	Harmonic current protection
0x10D	269	R/W	int	D*1	P_THD_UMAX	Harmonic voltage protection
0x10E	270	R/W	int	D*1	CTL_MODE	Compound mode
0x10F	271	R/W	int	D*1	CTL_ZHBL	Total and phase percent
0x110	272	R/W	int	D*1	CONC1	Capacitor # 1 capacity
0x111	273	R/W	int	D*1	CONC2	Capacitor # 2 capacity
0x112	274	R/W	int	D*1	CONC3	Capacitor # 3 capacity
0x113	275	R/W	int	D*1	CONC4	Capacitor # 4 capacity
0x114	276	R/W	int	D*1	CONC5	Capacitor # 5 capacity
0x115	277	R/W	int	D*1	CONC6	Capacitor # 6 capacity
0x116	278	R/W	int	D*1	CONC7	Capacitor # 7 capacity
0x117	279	R/W	int	D*1	CONC8	Capacitor # 8 capacity
0x118	280	R/W	int	D*1	CONC9	Capacitor # 9 capacity
0x119	281	R/W	int	D*1	CONC10	Capacitor # 10 capacity
0x11A	282	R/W	int	D*1	CONC11	Capacitor # 11 capacity
0x11B	283	R/W	int	D*1	CONC12	Capacitor # 12 capacity
0x11C	284	R/W	int	D*1	CONC13	Capacitor # 13 capacity
0x11D	285	R/W	int	D*1	CONC14	Capacitor # 14 capacity
0x11E	286	R/W	int	D*1	CONC15	Capacitor # 15 capacity

0x11F	287	R/W	int	D*1	CONC16	Capacitor # 16 capacity
0x120	288	R/W	int	D*1	CONC17	Capacitor # 17 capacity
0x121	289	R/W	int	D*1	CONC18	Capacitor # 18 capacity
0x122	290	R/W	int	D*1	CONC19	Capacitor # 19 capacity
0x123	291	R/W	int	D*1	CONC20	Capacitor # 20 capacity
0x124	292	R/W	int	D*1	CONC21	Capacitor # 21 capacity
0x125	293	R/W	int	D*1	CONC22	Capacitor # 22 capacity
0x126	294	R/W	int	D*1	CONC23	Capacitor # 23 capacity
0x127	295	R/W	int	D*1	CONC24	Capacitor # 24 capacity
0.120 200			D*1		Total compensation	
0X120	290		IIIL			loops
0v120	207	D /\\/	int	D*1		Phase compensation
UX129 297 R		IIII	D.T		loops	

Technical instructions, subject to change without notice.