Elecnova

Power Quality Products

User Manual

Applied to: SFR-APF4-150/0.4M

JIANGSU SFERE ELECTRIC CO., LTD.

Safety instructions

Before installing and using the device, please read this manual carefully to better install and use this product. The device must be debugged by the manufacturer and its authorized agents, otherwise it may endanger personal safety and cause device failure. The resulting device damage is not covered by the warranty.

The device is only used for commercial and industrial users, not as a power source for any life support device.

Unauthorized personnel are prohibited from debugging device.

Grounding

When connecting the input cable, be sure to ground it reliably. The grounding of the device must comply with local electrical codes.

User maintainable devices

Tools are required for all internal maintenance and repair work of the device, and should be performed by personnel who have received relevant training. Devices (including those behind the cover) that require tools to open are not user-maintainable.

The device fully meets the safety requirements of device in the operating area. The device and internal capacitor modules have dangerous voltages, but are not accessible to non-maintenance personnel. Since it is only possible to touch a device with

dangerous voltage after opening the cover with a tool, the possibility of contact with dangerous voltage has been minimized. There will be no danger if the device is operated in accordance with the general specifications and following the steps recommended in this manual.

1.Introduction	
1.1 Overview	1
1.2Model selection错误!	未定义书签。
2.Technical specification	1
2.1Technical parameters	1
3.Installation错误!	未定义书签。
3.1Installation instructions and dimensions	未定义书签。
3.2 Installation requirements	3
3.3 Wiring错误!	未定义书签。
3.4 Electrical Installation错误!	未定义书签。
4.Operation错误!	未定义书签。
4.1 Check before starting错误!	未定义书签。
4.2 Device debugging错误!	未定义书签。
5.Daily maintenance错误!	未定义书签。
6.Handling of common abnormal problems错误!	未定义书签。
7.Accessory List错误!	未定义书签。
Appendix: Communication Address Table	19

Content

1.Introduction

1.1 Overview

Power quality products include active harmonic filters (AHF) and static var generators (SVG). The product uses an efficient power electronics topology and advanced all-digital control technology to dynamically eliminate harmonic currents and improve power factor.

The device can be widely used in the following industrial fields (steel industry, metallurgy industry, mining industry, new energy industry, automotive industry), municipal field (water treatment industry, telecommunications industry, research institutes), commercial field (hospital, bank, shopping mall , schools, computer rooms, computer centers), rail transportation (electrified railways, subways, ships).

2. Technical specification

Input			
System voltage	Line voltage 400V		
System voltage	+150/		
range	±15%		
Frequency	50Hz ±5%		
	Output and installation		
Capacity	150A Wall Mounted/Rack Mounted		
specification			
Module type			
Incoming way	Upper incoming/Back incoming		
	Performance		
Harmonics	≥90% (Within the range of the ordered capacity, and the load harmonic		
filtering rate	content is higher than 30% of the ordered capacity)		
Harmonics	$2^{nd}{}^{rd}{}^{st}$ harmonics $$ (If you need to control the harmonic order of more		

2.1 Technical parameters

filtering range	than 25 times, you should write in the contract)		
Full response time	≤5ms		
Instantaneous response time	≤100us		
Dynamic current	1.2 times the filter rated capacity output, 1min		
	Protection		
Overload protection	Automatic current limit at 100% rated output		
Other protection	Over-voltage protection, under-voltage protection, over-temperature protection, over-current protection		
	Operation mode		
Stand-alone			
operation	Support		
Parallel operation	Conventionally support 8 sets, special requirements can be customized		
	Display and operation		
Status display	Power / Operation / Fault LED indication		
Module operation	Start/Stop/Restart		
HMI	Optional 7" (Hole size 215×152mm)		
(Optional)	10" (Hole size 261×180mm)		
Communication (RS485 interface)	1 loop Modbus-RTU protocol external communication interface, Users can have access to the background system through this interface or HMI port		
Environment condition			
IP level	IP20 (customized)		
Operating			
environment	-25℃~40℃		
temperature			
Storage/	-25℃~55℃		

transport	
temperature	
Work humidity	Relative humidity 5~95%, no condensation
Altitude	1000m and below(above 1000m, Every additional 100m / 1% derating)
Standard	JB/T 11067-2013 Low-voltage active power filter device

3. Installation

3.1 Size

Rack Mounted 150A

3.2 Installation requirements

3.2.1 Installation environment

- Good ventilation, keep away from water, heat and flammable and explosive materials.
- Avoid direct sunlight.
- Avoid installation in environments with conductive dust, volatile gases, corrosive substances, and excessive salt.
- If necessary, an indoor exhaust fan should be installed to avoid an increase in room temperature. In a dusty environment, dust protection should be done.

3.2.2 Unpacking

The equipment shall be placed in a storage environment that meets the requirements, and the storage time shall not exceed 3 months.

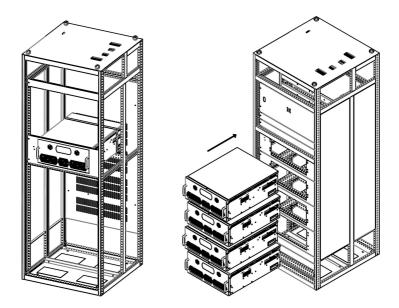
During equipment installation, the equipment shall be transported to the installation site and then the outer package shall be removed to check the following items:

1) Open the equipment package and visually inspect the appearance of the equipment. If there is any damage, please inform the carrier immediately.

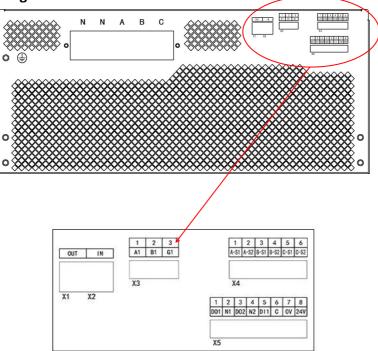
2) Check whether the models of attached accessories are complete and correct according to the list of delivered accessories, and properly keep various spare parts and accessories for subsequent equipment installation, connecting cables and future maintenance.

> When transporting, loading, unloading and handling equipment, appropriate precautions must be taken and appropriate manual and mechanical tools must be used to avoid damage to the equipment. If the equipment does not need to be installed immediately, be sure to store it on a solid and flat ground and follow the storage conditions listed in the technical parameters section. In this case, it is recommended to store the equipment in its original protective packaging.

3.2.3 Installation spacing


AHF module adopts forced ventilation cooling system, with air inlet on the front plate and air outlet at the rear of the module. After installation, the air flow at the inlet and outlet of the equipment must flow freely. At maximum power, the air velocity is 375 M³ / h_{\circ} The AHF module has its own power control system, which can control the fan speed and maximum power according to the internal temperature, so as to ensure that the active filter can maintain the best performance under complex conditions. In order to ensure the

performance of the equipment, we recommend to ensure that the air can flow freely at the front panel of the rack AHF, there are no obstacles at the rear, and a gap of at least 300 mm is left.


Ventilation distance

3.2.4 Installation in cabinet

The rack type installation in the cabinet is shown in the figure. Pay attention to the heat

3.3 Wiring

Function interface definition

Port type	Port No.	Function/description
X1	OUT	An output port that communicates with other modules through a network cable
X2	IN	Communicate with HMI touch screen through network cable or online with the previous module
ХЗ	A1	
Communication	B1	Communication output Note: Invalid when the module is SVGM
port	G1	
X4 CT signal port	A-S1	Input port of phase a current detection S1 (connected with phase a transformer S1)

	A-S2	Phase a current detection S2 input port (connected with phase a transformer S2)
	B-S1	Phase B current detection S1 input port (connected with phase B transformer S1)
	B-S2	Phase B current detection S2 input port (connected with phase B transformer S2)
	C-S1	Phase C current detection S1 input port (connected with phase C transformer S1)
	C-S2	Phase C current detection S2 input port (connected with phase C transformer S2)
	DO1	Programmable relay output, default configuration
	N1	equipment fault relay output
	DO2	Programmable relay output. The default configuration is the
X5	N2	relay output for equipment startup and operation
Control signal	DI1	Equipment emergency stop input port (connected with
port	С	external "normally closed" emergency stop button)
	0V	Power output negative pole OV (supplying power to HMI touch screen)
	24V	Power output positive + 24V (supplying power to HMI touch screen)

3.3.1 Power cable selection

Table 3-1 Recommended section of cable cross section

Current	ABC three phase main circuit incoming	N line	PE line
capacity	line selection	selection	selection
50A and below	Copper core is 25 mm2 insulated heat-resistant flexible cable	The N-line cable is 1.5	The PE cable
70A-120A	Copper core is 50 mm2 insulated heat-resistant flexible cable	times the copper core	is 0.67 times the copper
120A-160A	Copper core is 70 mm2 insulated heat-resistant flexible cable	of the three-phase	core of the three-phase
160A-220A	Copper core is 90 mm2(or 2 pcs of 50mm2) insulated heat-resistant flexible	ABC main circuit cable.	ABC main circuit cable

	cable	(Note: 3L	
	Copper core is 120 mm2(or 2 pcs of	AHF in the	
220A-300A	70mm2) insulated heat-resistant flexible	specification	
	cable	model has	
300A-400A		no N line; 4L	
	Copper core is 2 pcs of 90mm2 insulated heat-resistant flexible cable	AHF in the	
		specification	
		model has N	
		line)	

The device power input and output power cables mainly include the main AC power input cable and the protective ground wire. It is recommended that the input and output cables of the device should be BVR or RV type flexible connecting cables with a rated dielectric strength of AC450V / 750V and an operating temperature of 70 ° C. The current and cable selection of this device are shown in Table 3-1.

3.3.2 CT and its cable selection

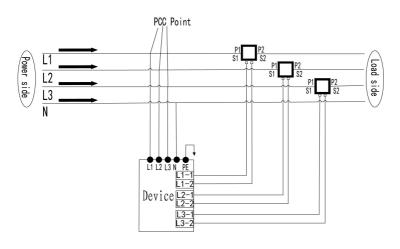
The use of current transformer is mainly used for AHF to collect load current and calculate the data of harmonic current, reactive current, negative sequence current and zero sequence current of load current. Table 3-2 is the selection guide for the key parameters of transformers used in this series of AHFs.

Parameter	Requirements	Remarks
Primary rated current	In	Recommend: 0.3In≤Actual maximum operating current≤0.6In
Secondary rated current	5A	
Rated voltage	≥0.66kV	
Rated capacity	≥2VA	
Accuracy level	0.5 or 0.2	

Table 3-2 Transformer key parameter selection

	The specific size needs to be selected
Dimension	 according to the on-site installation
	environment

Transformer secondary side (rated current 5A) cable, a total of 3 groups (6 pcs) below 15m : RVVSP 2 × 2.5 mm2; 15m-30m: RVVSP 2 × 4 mm2.


Note: if the load current is too small, the compensation and filtering effect may be affected. Please know!

3.3.3 Cable connections

Notes:

- To ensure safety, make sure that the power supply device (such as a transformer) is powered off before connecting all cables;
- To ensure safety, first connect the ground wire;
- Make sure the phase sequence of power cable connection is correct;

• Adopt the correct power distribution method (see Figure 3-3A and Figure 3-3B) to ensure the safety of AHF and user device; The main circuit wiring mode is shown in the figure. The wiring should ensure that the phase sequence of the power grid is consistent with the phase sequence of the device. Otherwise, the device may not start normally. The installation direction of the transformer must be close to the load as shown on the P2 surface. The S1 and S2 of each transformer must correspond to the AHF port with the corresponding label. It is strictly forbidden to open the secondary side.(If the circuit is open, it may cause the transformer to burn).

Correct power distribution mode (the transformer is located behind the PCC point).

At this time, the CT configuration shall be "load side"

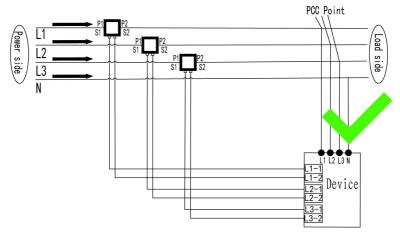
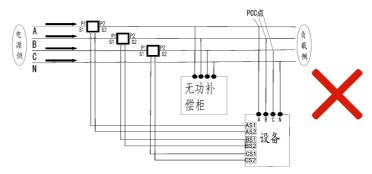



Figure 3-3B

Correct power distribution mode (transformer is located in front of PCC point).

At this time, CT configuration shall be "grid side"

Important: when the module is AHF, if there is a reactive power compensation cabinet on site, the transformer cannot contain the current of the reactive power compensation cabinet, otherwise the module will not operate normally or even be damaged!

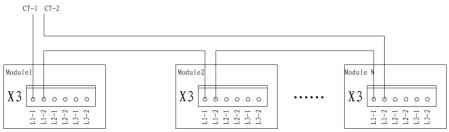


Figure 3-4 CT connection diagram of multiple modules

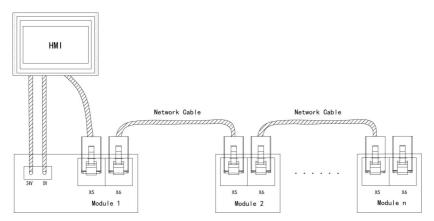
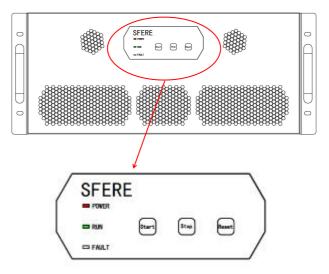



Figure .3-5 schematic diagram of connection of multiple modules

and machine communication lines

When multiple modules are combined, CT_ B/CT_ C. refer to CT for signal wiring mode_ A (Fig. 3-4), the current signals are connected in series. The communication interfaces X1 and X2 of the module are connected hand in hand through the network cable (Fig. 3-5), and finally connected with the man-machine interface through the connecting line of DB9 network port.

4. Operation

4.1 Check before running

After the installation of the device, power on after confirming the electrical connection of the system.

1) Confirm that the device shell is reliably connected with the protective ground to prevent the shell from being charged.

2) Check and confirm that the power distribution mode of the device, power cables and signal cables are correctly connected without short circuit.

3) Check and confirm that all input switches are disconnected, and put warning signs on these switches to prevent other faults people operate the switch.

4.2 Testing

(1) Setting parameters: the required parameters are transformation ratio of current transformer, CT position, shunt coefficient and number of parallel units.

Name	Description	Range	Remark
Transformation ratio	Sampling CT ratio	0~20000	Set up according to the site conditions
Shunt coefficient	Reciprocal of number of parallel machines	0~1.000	Ratio of module to total parallel operation capacity
Threshold current	When the load current exceeds the threshold current setting value, the devicce operates without load and does not output compensation current	0~100	Set according to site conditions The default is 0
Unbalance threshold	When the load current exceeds the threshold current setting value, the equipment operates without load and does not output compensation current	0~100	Set according to site conditions The default is 0
Total current limiting	Output maximum current	0~200	The total current limit shall not exceed the rated current of the module
Number of parallel machines	Number of parallel operation modules	1~8	
Temperature limit	Temperature limit protection switch	Start/Stop	When on, derate the total current when the internal heat dissipation temperature exceeds the default value

CT position	Select the transformer	Load or grid	1: Grid side
	location		2: Load side
Postal address	External communication	1~243	
	address	1 245	
Baud rate	Baud rate of external	2400~38400	Default 9600
Dadu Tate	communication	2400 30400	
Data farmat	Data format of external	N 0 1	
Data format	communication	N.8.1	
Power factor	Set target power factor	0.9~1	Factory Setting 0.98

(2) In the function option setting, you can select the number of harmonics to be filtered. It is recommended that 3, 5, 7 and 11 be turned on and the rest be turned off.

(3) To start up, click the start slider on the touch screen or long press the "start" button of the module.

(4) Use the power quality analyzer or the multi-function meter with harmonic measurement on the incoming cabinet to observe whether the current harmonic content decreases. If it does not decrease, it increases. It is necessary to detect whether the wiring and position of the current transformer are correct.

Note: please refer to the man-machine interface user manual for detailed operation.

4.3 Stop

[1] Click the touch screen shutdown slider or long press the "Stop" button of the module.

[2] Disconnect the MCCB.

About 15 minutes after the complete power off, the electrolytic capacitor voltage inside the device is completely released, and the device is shut down normally. Pay attention to personal safety to prevent electric shock !

5. Maintenance

The components inside the device are stationary except for the cooling fan rotating. Routine maintenance content is very small, because the normal operation of the device is greatly affected by the environment, so in daily maintenance, care must be taken to ensure that the environmental requirements for device operation are met. It is recommended that the user record the following inspection contents, so that the machine can maintain the best performance and prevent small problems from turning into major failures.

1.Daily inspection

1) Check whether the panel running indicator is on;

2) Check that there is no obvious high temperature at the output of each fan in the cabinet;

3) Whether there is abnormal noise and abnormal smell;

4) Confirm that the ventilation grid is not blocked;

5) Check whether all fans are operating normally and confirm that there is wind blowing out from the machine. The life of the fan will be shortened under high temperature environment;

6) Measure and record the three-phase input voltage of the device;

7) Measure and record the current of each phase of the device input. If the measured value is significantly different from the previous one, record the size, type and location of the newly added load, which is helpful to help analyze whether a failure will occur.

2. Monthly inspection

1) First check according to the content of daily inspection;

2) Shut down according to the shutdown procedure, wait 10 minutes, and then check when the DC side capacitor voltage drops to a safe voltage;

3) Check the aging, wear and over temperature traces of power cables and signal

cables, and check whether the power cables and signal cables are firmly connected;

4) Use a vacuum cleaner to remove surface impurities, and use low-pressure air to remove the dust from the cooling air duct to keep the air duct clear.

3. Other checks

1)Input / output cable insulation jacket and connection end inspection: periodic inspection is recommended. At this time, the device needs to be completely powered off, and the inspection period is preferably not more than 1 year;

2) Lightning protection inspection: The lightning protection indicator needs to be opened before the front door can be observed, so it is recommended to follow the monthly inspection method. However, daily inspections are required in heavy and wet seasons, especially after lightning strikes occur near the device, in order to discover problems in real time and timely maintenance.

6.Handling of common abnormal problems

When the device stops during operation, the abnormal information will be saved in the event record, and the user can analyze and deal with it according to the saved fault information.

Serial	Problem	Cause Analysis	Approach	
number	Description	Cause Analysis	Approach	
1	The active power of the touch screen view interface is negative	The current direction of the L1 transformer, or its secondary signal line is reversed, or the three-phase current and the three-phase voltage are not in	Check if the current direction of L1 transformer is from P1 to P2? S1 is connected to terminal block L1-1, S2 is connected to terminal block L1-2? Check the sequence of three-phase voltage and current in one-to-one correspondence?	

Table 6.1 Problems and treatment of field installation wiring debugging

2Start-up emergency stop protectionbutton is pressed, or the module DI1 port and port C are not short-circuited;release the emergency stop button; there is no emergency stop button, and port DI1 and port C are not short-circuited;3The fan does not rotate after the device is startedFan failure : abnormal 24V power supply; missing fan control signal;Check whether the fan cable disconnected; check whether the fan is damaged (su as fan motor failure); check whether the 24V power supply normal;4The powerInsufficient reactive power compensationCheck whether the wiring of main cab and transformer signal line is wron Measure and compare the power fact during equipment operation and			one-to-one correspondence;	
3The fan does not rotate after the device is 	2	emergency stop	button is pressed, or the module DI1 port and port C are not	If the emergency stop button is pressed, release the emergency stop button; if there is no emergency stop button, and port DI1 and port C are not short-circuited, short-circuit with a wire.
4 The power power compensation during equipment operation and transformer signal line is wron Measure and compare the power fact	3	not rotate after the device is	abnormal 24V power supply; missing fan	disconnected; check whether the fan is damaged (such as fan motor failure); check whether the 24V power supply is
wiring error; shutdown to determine whether the	4	The power factor is low	power compensation capacity; Device	shutdown to determine whether the reactive power compensation capacity is

1) In the case of load current, the secondary side of the transformer cannot be opened, otherwise the transformer may be damaged, so the secondary side needs to be shorted with a shorting piece.

7. Accessory List

1. Dimensio	ns 581mm(Width	581mm(Width)×230mm(Height)×729mm(Depth)							
2. Weight	51kg								
3. Accessories									
No.	Name	Specification	Quantity						
1	Rack mount		2						
2	Terminal	8P	1(already installed						
			on the product)						
3	Terminal	6P	1(already installed						
			on the product)						
4	Terminal	3P	1(already installed						
			on the product)						
5	Bridge piece	EBL2-5	1(already installed						
			on the product)						
6	Cross recessed pan	M4×8	6						
	head screws								
7	Testing record		1						
8	Instruction	User Manual for Power Quality							
		Products							

Appendix: Communication Address Table

Address		R/W	R/W Data		Name	Description
Hex.	Decimal	type	type	format	Name	Description
0x0	0	R/W	long	D*1	Run_ST	Protection mark
0x2	2	R	long	D*1	Filter	Harmonic enable flag (display 0 means
0,2	2	n	long		Flag	off, display 1 means on)
0x4	4	R	long	D*1	PH_En_Flag	Imbalance enable flag (display 0 means
0,4	-	K	iong			off, display 1 means on)
0x6	6	R	long	D*1	Q_En_Flag	Reactive enable flag (display 0 means off,
	Ŭ	n	10115	01	Q	display 1 means on)
0x8	8	R	long	D*1	Auto_Reset	Self-reset enable flag (display 0 means off,
	Ŭ		10118	01	Flag	display 1 means on)
0xA	10	R	long	D*1	On_Off	Start flag (display 0 means off, display 1
			10118		Flag	means on)
0xC	12	R	long	D*0.01	DC+	DC bus upper side voltage xxxx.xxV
0xE	14	R	long	D*0.01	DC-	DC bus lower voltage xxxx.xxV
0x10	16	R	long	D*0.01	DC	DC bus total voltage xxxx.xxV
0x12	18	R	long	D*0.01	la_Out	Device L1 output current value xxx.xxA
0x14	20	R	long	D*0.01	lb_Out	Device L2 output current value xxx.xxA
0x16	22	R	long	D*0.01	lc_Out	Device L3 output current value xxx.xxA
0x18	24	R	long	D*0.01	In_Out	Device LN output current value xxx.xxA
0x1A	26	R	long	D*0.01	Uan	Phase L1 grid side voltage xxx.xxV
0x1C	28	R	long	D*0.01	Ubn	Phase L2 grid side voltage xxx.xxV
0x1E	30	R	long	D*0.01	Ucn	Phase L3 grid side voltage xxx.xxV
0x20	32	R	long	D*0.01	la	Phase L1 grid side current xxx.xxA
0x22	34	R	long	D*0.01	Ib	Phase L2 grid side current xxx.xxA
0x24	36	R	long	D*0.01	lc	Phase L3 grid side current xxx.xxA
0x26	38	R	long	D*0.01	In	Phase LN grid side current xxx.xxA

Ox2A42RlongD*0.01Pb_SysPhase L2 grid side active power xxx.xxkOx2C44RlongD*0.01Pc_SysPhase L3 grid side active power xxx.xxkOx2E46RlongD*0.01P_SysGrid side active power xxx.xxkwOx3048RlongD*0.01Qa_SysPhase L3 grid side reactive powerOx3250RlongD*0.01Qb_SysPhase L2 grid side reactive powerOx3452RlongD*0.01Qc_SysPhase L3 grid side reactive powerOx3654RlongD*0.01Q_SysGrid side reactive powerOx3856RlongD*0.01Sa_SysPhase L3 grid side apparent powerOx3458RlongD*0.01Sa_SysPhase L3 grid side apparent powerOx3660RlongD*0.01Sc_SysPhase L3 grid side apparent powerOx3760RlongD*0.01S_SysPhase L3 grid side power factorOx4064RlongD*0.01Pfa_SysPhase L3 grid side power factorOx4468RlongD*0.01Pfc_SysPhase L3 grid side power factorOx4470RlongD*0.01Pfc_SysPhase L3 grid side power factorOx4474RlongD*0.01Pfc_SysPhase L3 grid side power factorOx4474RlongD*0.01Ifd_SysGrid side current harmonics distortion <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></b<>							
Ox2C44RlongD*0.01Pc_SysPhase L3 grid side active power xxx.xxkOx2E46RlongD*0.01P_SysGrid side active power xxx.xxkwOx3048RlongD*0.01Qa_SysPhase L1 grid side reactive powerOx3250RlongD*0.01Qb_SysPhase L2 grid side reactive powerOx3452RlongD*0.01Qc_SysPhase L3 grid side reactive powerOx3654RlongD*0.01Q_SysGrid side reactive powerOx3856RlongD*0.01Sa_SysPhase L1 grid side apparent powerOx3452RlongD*0.01Sa_SysPhase L2 grid side apparent powerOx3654RlongD*0.01Ss_SysPhase L2 grid side apparent powerOx3760RlongD*0.01Sc_SysPhase L2 grid side apparent powerOx3262RlongD*0.01S_SysPhase L1 grid side power factorOx4064RlongD*0.01Pfa_SysPhase L2 grid side power factorOx4468RlongD*0.01Pfc_SysPhase L3 grid side current harmonics distortion rate xxx.xx%Ox4474RlongD*0.01Pfc_SysPhase L3 grid side power factorOx4476RlongD*0.01Pfc_SysPhase L3 grid side power factorOx4478RlongD*0.01Ind_SysGrid side cu	0x28	40	R	long	D*0.01	Pa_Sys	Phase L1 grid side active power xxx.xxkw
Ox2E46RlongD*0.01P_SysGrid side active power xxx.xkw0x3048RlongD*0.01Qa_SysPhase L1 grid side reactive power0x3250RlongD*0.01Qb_SysPhase L2 grid side reactive power0x3452RlongD*0.01Qc_SysPhase L3 grid side reactive power0x3654RlongD*0.01Q_SysGrid side reactive power0x3856RlongD*0.01Sa_SysPhase L1 grid side apparent power0x3A58RlongD*0.01Sb_SysPhase L2 grid side apparent power0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysPhase L1 grid side power factor0x4064RlongD*0.01Pfa_SysPhase L2 grid side power factor0x4468RlongD*0.01Pfc_SysPhase L3 grid side power factor0x4470RlongD*0.01Pfc_SysPhase L3 grid side power factor0x4474RlongD*0.01SysUnbalan ceGrid side current harmonics distortion rate xxx.x%0x4478RlongD*0.01la_LoadLoad side current L10x4276RlongD*0.01la_LoadLoad side current L30x4474RlongD*0.01la_LoadLoad side current L10x45 </td <td>0x2A</td> <td>42</td> <td>R</td> <td>long</td> <td>D*0.01</td> <td>Pb_Sys</td> <td>Phase L2 grid side active power xxx.xxkw</td>	0x2A	42	R	long	D*0.01	Pb_Sys	Phase L2 grid side active power xxx.xxkw
0x3048RlongD*0.01Qa_SysPhase L1 grid side reactive power0x3250RlongD*0.01Qb_SysPhase L2 grid side reactive power0x3452RlongD*0.01Qc_SysPhase L3 grid side reactive power0x3654RlongD*0.01Q_SysGrid side reactive power0x3856RlongD*0.01Sa_SysPhase L1 grid side apparent power0x3A58RlongD*0.01Sb_SysPhase L2 grid side apparent power0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysPhase L1 grid side apparent power0x4064RlongD*0.01S_SysPhase L1 grid side apparent power0x4266RlongD*0.01Pfa_SysPhase L1 grid side power factor0x4468RlongD*0.01Pfc_SysPhase L3 grid side power factor0x4470RlongD*0.01PfcGrid side current harmonics distortion rate xxx.x%0x4A74RlongD*0.01Ia_LoadLoad side current L10x4E78RlongD*0.01lb_LoadLoad side current L30x5282RlongD*0.01In_LoadLoad side current L30x5484RlongD*0.01In_LoadLoad side current LN	0x2C	44	R	long	D*0.01	Pc_Sys	Phase L3 grid side active power xxx.xxkw
0x3250RlongD*0.01Qb_SysPhase L2 grid side reactive power0x3452RlongD*0.01Qc_SysPhase L3 grid side reactive power0x3654RlongD*0.01Q_SysGrid side reactive power0x3856RlongD*0.01Sa_SysPhase L1 grid side apparent power0x3A58RlongD*0.01Sb_SysPhase L2 grid side apparent power0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysPhase L3 grid side apparent power0x4064RlongD*0.01Pfa_SysPhase L1 grid side power factor0x4266RlongD*0.001Pfb_SysPhase L2 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4470RlongD*0.01Pfc_SysPhase L3 grid side power factor0x4872RlongD*0.01PfcGrid side current harmonics distortion rate xxx.xx%0x4474RlongD*0.01la_LoadLoad side current L10x4276RlongD*0.01lb_LoadLoad side current L30x4478RlongD*0.01lb_LoadLoad side current L30x4580RlongD*0.01lc_add/lbalaLoad side current LN0x4678 <td>0x2E</td> <td>46</td> <td>R</td> <td>long</td> <td>D*0.01</td> <td>P_Sys</td> <td>Grid side active power xxx.xxkw</td>	0x2E	46	R	long	D*0.01	P_Sys	Grid side active power xxx.xxkw
0x3452RlongD*0.01Qc_SysPhase L3 grid side reactive power0x3654RlongD*0.01Q_SysGrid side reactive power0x3856RlongD*0.01Sa_SysPhase L1 grid side apparent power0x3A58RlongD*0.01Sb_SysPhase L2 grid side apparent power0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysGrid side apparent power0x4064RlongD*0.01Pfa_SysPhase L2 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4470RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4872RlongD*0.001Pfc_SysPhase L3 grid side power factor xx.x0x4474RlongD*0.01Thd_SysGrid side current harmonics distortion rate xx.xx%0x4474RlongD*0.01la_LoadLoad side current L10x4276RlongD*0.01lb_LoadLoad side current L30x4478RlongD*0.01lb_LoadLoad side current L30x4584RlongD*0.01lb_LoadLoad side current LN0x5282RlongD*0.01ln_LoadLoad side current LN0x5484Rlo	0x30	48	R	long	D*0.01	Qa_Sys	Phase L1 grid side reactive power
0x3654RlongD*0.01Q_SysGrid side reactive power0x3856RlongD*0.01Sa_SysPhase L1 grid side apparent power0x3A58RlongD*0.01Sb_SysPhase L2 grid side apparent power0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysGrid side apparent power0x4064RlongD*0.001Pfa_SysPhase L1 grid side power factor0x4266RlongD*0.001Pffa_SysPhase L2 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4470RlongD*0.001PfcGrid side power factor xxx.x0x4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%0x4474RlongD*0.01la_LoadLoad side current L10x4276RlongD*0.01lb_LoadLoad side current L20x4872RlongD*0.01Ib_LoadLoad side current L30x4474RlongD*0.01lb_LoadLoad side current L10x4478RlongD*0.01lb_LoadLoad side current L30x4580RlongD*0.01lb_LoadLoad side current L30x5282RlongD*0.01 <td>0x32</td> <td>50</td> <td>R</td> <td>long</td> <td>D*0.01</td> <td>Qb_Sys</td> <td>Phase L2 grid side reactive power</td>	0x32	50	R	long	D*0.01	Qb_Sys	Phase L2 grid side reactive power
0x3856RlongD*0.01Sa_SysPhase L1 grid side apparent power0x3A58RlongD*0.01Sb_SysPhase L2 grid side apparent power0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysGrid side apparent power0x4064RlongD*0.001Pfa_SysPhase L1 grid side power factor0x4266RlongD*0.001Pfb_SysPhase L2 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4470RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4872RlongD*0.001Pfc_SysPhase L3 grid side power factor xxx.x0x4A74RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%0x4A74RlongD*0.01la_LoadLoad side current L10x4E78RlongD*0.01lb_LoadLoad side current L30x5080RlongD*0.01ln_LoadLoad side current L30x5484RlongD*0.01ln_LoadLoad side current LN0x5484RlongD*0.01nload side current imbalance rate	0x34	52	R	long	D*0.01	Qc_Sys	Phase L3 grid side reactive power
Ox3A58RlongD*0.01Sb_SysPhase L2 grid side apparent powerOx3C60RlongD*0.01Sc_SysPhase L3 grid side apparent powerOx3E62RlongD*0.01S_SysGrid side apparent powerOx4064RlongD*0.001Pfa_SysPhase L1 grid side power factorOx4266RlongD*0.001Pfb_SysPhase L2 grid side power factorOx4468RlongD*0.001Pfb_SysPhase L3 grid side power factorOx4468RlongD*0.001Pfc_SysPhase L3 grid side power factorOx4468RlongD*0.001PfcGrid side power factor xx.xOx4470RlongD*0.001PfGrid side current harmonics distortion0x4872RlongD*0.01Thd_SysGrid side current imbalance rate0x4474RlongD*0.01Ia_LoadLoad side current L10x4276RlongD*0.01Ib_LoadLoad side current L20x4078RlongD*0.01Ib_LoadLoad side current L30x4580RlongD*0.01In_LoadLoad side current LN0x5080RlongD*0.01In_LoadLoad side current LN0x5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x36	54	R	long	D*0.01	Q_Sys	Grid side reactive power
0x3C60RlongD*0.01Sc_SysPhase L3 grid side apparent power0x3E62RlongD*0.01S_SysGrid side apparent power0x4064RlongD*0.001Pfa_SysPhase L1 grid side power factor0x4266RlongD*0.001Pfb_SysPhase L2 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4670RlongD*0.001PfGrid side power factor xxx.x0x4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%0x4474RlongD*0.01Ia_LoadLoad side current L10x4578RlongD*0.01Ib_LoadLoad side current L20x5080RlongD*0.01In_LoadLoad side current L30x5484RlongD*0.01In_LoadLoad side current LN0x5484RlongD*0.01In_LoadLoad side current LN	0x38	56	R	long	D*0.01	Sa_Sys	Phase L1 grid side apparent power
0x3E62RlongD*0.01S_SysGrid side apparent power0x4064RlongD*0.001Pfa_SysPhase L1 grid side power factor0x4266RlongD*0.001Pfb_SysPhase L2 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4670RlongD*0.001PfGrid side power factor xxx.x0x4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%0x4474RlongD*0.01Ia_LoadLoad side current L10x4276RlongD*0.01lb_LoadLoad side current L20x5080RlongD*0.01lc_LoadLoad side current L30x5282RlongD*0.01In_LoadLoad side current LN0x5484RlongD*0.01In_LoadLoad side current LN	0x3A	58	R	long	D*0.01	Sb_Sys	Phase L2 grid side apparent power
Ox4064RlongD*0.001Pfa_SysPhase L1 grid side power factorOx4266RlongD*0.001Pfb_SysPhase L2 grid side power factorOx4468RlongD*0.001Pfc_SysPhase L3 grid side power factorOx4670RlongD*0.001Pfc_SysPhase L3 grid side power factor xxx.xOx4872RlongD*0.001Thd_SysGrid side current harmonics distortion rate xxx.xx%Ox4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rateOx4C76RlongD*0.01Ia_LoadLoad side current L1Ox4E78RlongD*0.01lb_LoadLoad side current L3Ox5080RlongD*0.01In_LoadLoad side current L3Ox5484RlongD*0.01Load side current LNOx5484RlongD*0.01Load side current imbalance rate	0x3C	60	R	long	D*0.01	Sc_Sys	Phase L3 grid side apparent power
Ox4266RlongD*0.001Pfb_SysPhase L2 grid side power factorOx4468RlongD*0.001Pfc_SysPhase L3 grid side power factorOx4670RlongD*0.001PfGrid side power factor xxx.xOx4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%Ox4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rateOx4C76RlongD*0.01Ia_LoadLoad side current L1Ox4E78RlongD*0.01Ic_LoadLoad side current L3Ox5080RlongD*0.01In_LoadLoad side current L3Ox5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x3E	62	R	long	D*0.01	S_Sys	Grid side apparent power
0x4468RlongD*0.001Pfc_SysPhase L3 grid side power factor0x4670RlongD*0.001PfGrid side power factor xxx.x0x4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%0x4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rate0x4C76RlongD*0.01Ia_LoadLoad side current L10x4E78RlongD*0.01lb_LoadLoad side current L20x5080RlongD*0.01In_LoadLoad side current L30x5282RlongD*0.01In_LoadLoad side current LN0x5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x40	64	R	long	D*0.001	Pfa_Sys	Phase L1 grid side power factor
0x4670RlongD*0.001PfGrid side power factor xxx.x0x4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%0x4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rate0x4C76RlongD*0.01la_LoadLoad side current L10x4E78RlongD*0.01lb_LoadLoad side current L20x5080RlongD*0.01lc_LoadLoad side current L30x5282RlongD*0.01ln_LoadLoad side current LN0x5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x42	66	R	long	D*0.001	Pfb_Sys	Phase L2 grid side power factor
Ox4872RlongD*0.01Thd_SysGrid side current harmonics distortion rate xxx.xx%Ox4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rateOx4C76RlongD*0.01la_LoadLoad side current L1Ox4E78RlongD*0.01Ib_LoadLoad side current L2Ox5080RlongD*0.01lc_LoadLoad side current L3Ox5282RlongD*0.01In_LoadLoad side current LNOx5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x44	68	R	long	D*0.001	Pfc_Sys	Phase L3 grid side power factor
Ox4872RlongD*0.01Thd_Sys rate xxx.xx%Ox4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rateOx4C76RlongD*0.01Ia_LoadLoad side current L1Ox4E78RlongD*0.01Ib_LoadLoad side current L2Ox5080RlongD*0.01Ic_LoadLoad side current L3Ox5282RlongD*0.01In_LoadLoad side current LNOx5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x46	70	R	long	D*0.001	Pf	Grid side power factor xxx.x
Ox4A74RlongD*0.01SysUnbalan ceGrid side current imbalance rate0x4C76RlongD*0.01la_LoadLoad side current L10x4E78RlongD*0.01lb_LoadLoad side current L20x5080RlongD*0.01lc_LoadLoad side current L30x5282RlongD*0.01ln_LoadLoad side current LN0x5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0,49	72	р	long	D*0.01	The Suc	Grid side current harmonics distortion
Ox4A74RlongD*0.01responseGrid side current imbalance rateOx4C76RlongD*0.01Ia_LoadLoad side current L1Ox4E78RlongD*0.01Ib_LoadLoad side current L2Ox5080RlongD*0.01Ic_LoadLoad side current L3Ox5282RlongD*0.01In_LoadLoad side current LNOx5484RlongD*0.01LoadUnbala nLoad side current imbalance rate	0x48	72	ĸ	long	D.0.01	Thu_Sys	rate xxx.xx%
0x4C 76 R long D*0.01 la_Load Load side current L1 0x4E 78 R long D*0.01 lb_Load Load side current L2 0x50 80 R long D*0.01 lc_Load Load side current L3 0x52 82 R long D*0.01 ln_Load Load side current LN 0x54 84 R long D*0.01 loadUnbala n Load side current imbalance rate	0x4A	74	R	long	D*0.01	-	Grid side current imbalance rate
Ox4E 78 R long D*0.01 Ib_Load Load side current L2 0x50 80 R long D*0.01 Ic_Load Load side current L3 0x52 82 R long D*0.01 In_Load Load side current L3 0x54 84 R long D*0.01 In_Load Load side current inbalance rate							
Ox50 80 R long D*0.01 lc_Load Load side current L3 0x52 82 R long D*0.01 In_Load Load side current LN 0x54 84 R long D*0.01 In_Load Load side current imbalance rate	0x4C	76	R	long	D*0.01	la_Load	Load side current L1
Ox52 82 R long D*0.01 In_Load Load side current LN 0x54 84 R long D*0.01 LoadUnbala n Load side current imbalance rate	0x4E	78	R	long	D*0.01	lb_Load	Load side current L2
Ox54 84 R long D*0.01 LoadUnbala n Load side current imbalance rate	0x50	80	R	long	D*0.01	Ic_Load	Load side current L3
0x54 84 R long D*0.01 Load side current imbalance rate	0x52	82	R	long	D*0.01	In_Load	Load side current LN
n n	0v54	84	P	long	0.01 م	LoadUnbala	
0x56 86 R long D*0.01 Ia_LCL Phase L1 capacitor filter current xxx.x	0,54	04		IONE	0.01	n	
	0x56	86	R	long	D*0.01	la_LCL	Phase L1 capacitor filter current xxx.xx
0x58 88 R long D*0.01 Ib_LCL Phase L2 capacitor filter current xxx.x	0x58	88	R	long	D*0.01	Ib_LCL	Phase L2 capacitor filter current xxx.xx

					-	
0x5A	90	R	long	D*0.01	Ic_LCL	Phase L3 capacitor filter current xxx.xx
0x5C	92	R	long	D*0.01	In_LCL	Phase LN capacitor filter current xxx.xx
0x5E	94	R	long	D*0.1	Tem_A1	IGBT L1 phase temperature *0.1
0x60	96	R	long	D*0.1	Tem_B1	IGBT L2 phase temperature*0.1
0x62	98	R	long	D*0.1	Tem_C1	IGBT L3 phase temperature*0.1
0x64	100	R	long	D*0.1	Tem_A2	IGBT L1 phase temperature *0.1
0x66	102	R	long	D*0.1	Tem_B2	IGBT L2 phase temperature*0.1
0x68	104	R	long	D*0.1	Tem_C2	IGBT L3 phase temperature*0.1
0x6A	106	R	long	D*0.01	THI02	2 nd harmonic current calculation percentage XXX.XX%
0x6C	108	R	long	D*0.01	THI03	3 rd harmonic current calculation percentage
0x6E	110	R	long	D*0.01	THI04	4 th harmonic current calculation percentage
0x70	112	R	long	D*0.01	THI05	5 th harmonic current calculation percentage
0x72	114	R	long	D*0.01	THI06	6 th harmonic current calculation percentage
0x74	116	R	long	D*0.01	THI07	7 th harmonic current calculation percentage
0x76	118	R	long	D*0.01	THI08	8 th harmonic current calculation percentage
0x78	120	R	long	D*0.01	THI09	9 th harmonic current calculation percentage
0x7A	122	R	long	D*0.01	THI10	10 th harmonic current calculation percentage
0x7C	124	R	long	D*0.01	THI11	11 th harmonic current calculation percentage
0x7E	126	R	long	D*0.01	THI12	12 th harmonic current calculation

						percentage
0x80	128	R	long	D*0.01	THI13	13 th harmonic current calculation percentage
0x82	130	R	long	D*0.01	THI14	14 th harmonic current calculation percentage
0x84	132	R	long	D*0.01	THI15	15 th harmonic current calculation percentage
0x86	134	R	long	D*0.01	THI16	16 th harmonic current calculation percentage
0x88	136	R	long	D*0.01	THI17	17 th harmonic current calculation percentage
0x8A	138	R	long	D*0.01	THI18	18 th harmonic current calculation percentage
0x8C	140	R	long	D*0.01	THI19	19 th harmonic current calculation percentage
0x8E	142	R	long	D*0.01	THI20	20 th harmonic current calculation percentage
0x90	144	R	long	D*0.01	THI21	21 st harmonic current calculation percentage
0x92	146	R	long	D*0.01	THI22	22 nd harmonic current calculation percentage
0x94	148	R	long	D*0.01	THI23	23 rd harmonic current calculation percentage
0x96	150	R	long	D*0.01	THI24	24 th harmonic current calculation percentage
0x98	152	R	long	D*0.01	THI25	25 th harmonic current calculation percentage
0x9A	154	R	long	D*0.01	THI02_Load	2 nd harmonic current calculation percentage XXX.XX%
0x9C	156	R	long	D*0.01	THI03_Load	3 rd harmonic current calculation

						percentage
0x9E	158	R	long	D*0.01	THI04_Load	4 th harmonic current calculation percentage
0xA0	160	R	long	D*0.01	THI05_Load	5 th harmonic current calculation percentage
0xA2	162	R	long	D*0.01	THI06_Load	6 th harmonic current calculation percentage
0xA4	164	R	long	D*0.01	THI07_Load	7 th harmonic current calculation percentage
0xA6	166	R	long	D*0.01	THI08_Load	8 th harmonic current calculation percentage
0xA8	168	R	long	D*0.01	THI09_Load	9 th harmonic current calculation percentage
0xAA	170	R	long	D*0.01	THI10_Load	10 th harmonic current calculation percentage
0xAC	172	R	long	D*0.01	THI11_Load	11 th harmonic current calculation percentage
0xAE	174	R	long	D*0.01	THI12_Load	12 th harmonic current calculation percentage
0xB0	176	R	long	D*0.01	THI13_Load	13 th harmonic current calculation percentage
0xB2	178	R	long	D*0.01	THI14_Load	14 th harmonic current calculation percentage
0xB4	180	R	long	D*0.01	THI15_Load	15 th harmonic current calculation percentage
0xB6	182	R	long	D*0.01	THI16_Load	16 th harmonic current calculation percentage
0xB8	184	R	long	D*0.01	THI17_Load	17 th harmonic current calculation percentage
0xBA	186	R	long	D*0.01	THI18_Load	18 th harmonic current calculation

						percentage
0xBC	188	R	long	D*0.01	THI19 Load	19 th harmonic current calculation
			- 0			percentage
0xBE	190	R	long	D*0.01	THI20_Load	20 th harmonic current calculation
ONDE	190	Ň	10118	0.01		percentage
0xC0	192	R	long	D*0.01	THI21 Load	21 st harmonic current calculation
UNCO	192	N	10115	0.01	11121_0000	percentage
0xC2	194	R	long	D*0.01	THI22 Load	22 nd harmonic current calculation
0,02	134	N.	10115	0.01	11122_0000	percentage
0xC4	196	R	long	D*0.01	THI23 Load	23 rd harmonic current calculation
0,04	190	K	iong	D 0.01	111125_1080	percentage
0xC6	198	R	long	D*0.01	THI24 Load	24 th harmonic current calculation
	198	K	iong	D 0.01	111124_1000	percentage
0xC8	200	R	long	D*0.01	THI25 Load	25 th harmonic current calculation
UACO	200	n	IONS	D 0.01		percentage
0xCA	202	R	long	D*0.01	IA1_OUT	L1-1 phase output current value xxx.xxxa
0xCC	204	R	long	D*0.01	IB1_OUT	L2-1 phase output current value xxx.xxxa
0xCE	206	R	long	D*0.01	IC1_OUT	L3-1 phase output current value xxx.xxxa
0xD0	208	R	long	D*0.01	IA2_OUT	L1-2 phase output current value xxx.xxxa
0xD2	210	R	long	D*0.01	IB2_OUT	L2-2 phase output current value xxx.xxxa
0xD4	212	R	long	D*0.01	IC2_OUT	L3-2phase output current value xxx.xxxa
0xD5	213	R	int	D*0.1	Temp_In	Internal temperature
0xD6	214	R	int	D*0.1	Temp_Fan	Outside temperature

Protection mark

The 0 th	DC bus over-voltage protection	The 7 th	DC bus under-voltage protection
The 1 st	AC grid over-voltage protection	The 8 th	LCL topology C branch overload protection
The 2 nd	AC grid under-voltage protection	The 9 th	Grid voltage Ud off-limit protection

The 3 rd	Contactor abnormal protection	The 10 th	Grid voltage sum off-limit protection
The 4 th	Module IGBT over-temperature protection		AC grid voltage phase loss protection
The 5 th	Module output over-current protection		Null
The 6 th	Module emergency stop protection		

The information in this document is subject to changes without any further notice.