PZ19 Series Digital Display AC Voltmeter

User's Manual

The manual is applied to the following models: PZ194U-2X1/3X1/5X1/AX1/9X1 PZ194U-2K1/3K1/5K1/AK1/9K1 PZ194U-2X4/3X4/AX4/9X4 PZ194U-2K4/3K4/AK4/9K4 PZ194U-5XY1/AXY1/9XY1/9XY3/AXY3 PZ194U-5KY1/AKY1/9KY1/9KY3/AKY3 PZ194U-2S1/5S1/AS1/9S1/9S1J PZ194U-2S4/2S4T/AS4/9S4/9S4J/9S4T/9S4K PZ194U-ASY3/9SY3 PZ194U-2D4/2D4T/9D4/9D4T

Menu

1. Safety Instruction 1
2. Product instruction 1
2.1 Overview 1
2.2 Model selection 2
3. Installation and wiring 3
3.1 Outline dimension 3
3.2 Installation method 3
3.3 Wiring diagram 3
4. Operation
4.1 Panel instruction 5
4.2 Display 5
5. Setting
5.1 Reading mode7
5.2 Programming mode9
5.3 System setting12
5.4 Input setting12
5.5 Relay output setting13
5.6 Analog output setting14
5.7 Communication setting15
6. Common problems and troubleshooting 16
6.1 About communication16
6.2 Measured data is not correct 17
6.3 Meter does not work17
6.4 Other phenomena17
7. Technical specification
Appendix 1 Alarm items and units of relative alarm threshold
Appendix 2 Modbus-RTU Communication address information list

1. Safety Instruction

Thank you for choosing the meter researched and developed by Jiangsu Sfere Electric Co., Ltd. In order to ensure you to be convenient to purchase and use the meter safely, correctly and efficiently, please read this instruction carefully before using it, and make sure of paying attention to several points as follows:

◆ Make sure only the qualified technicians perform the installation and maintenance

• Before performing external or internal operation of the meter, make sure the input signal and power supply are switched off.

• The proper voltage detect device shall always be used to check there is no voltage in every part of meter.

• The electrical parameter supplied to the meter should be within the rated range.

The following conditions may result in damage or abnormal operation to the device

- The voltage of auxiliary power supply goes beyond the range;
- The frequency of power grid goes beyond rated range

• Connecting terminal wires without following the requirements.

2. Product instruction

2.1 Overview

This series digital display voltmeters are used to measure single phase or three phase AC voltage in low voltage distribution system. They are equipped with analog output, relay output, digital input and communication supporting Modbus-RTU protocol. Their transmitting ratio also can be changed through programming. There are different choices of outline size for this kind of meters. So they are suitable to replace analog pointer voltmeters.

This series digital display AC voltmeters have high environment adaptability because their working temperature range is -40 $^{\circ}$ 70 $^{\circ}$ C and EMC better than III level. They can be applied in control systems, distribution automation systems, industrial automation systems and intelligent buildings.

PZ194U-□X□: Measurement PZ194U-□K□: Measurement & communication & analog output PZ194U-□S□: Measurement & communication & digital input & relay output & analog output (optional) PZ194U-□D□: Measurement & communication & analog output

2.2 Model selection

			on				□ 0	utline	e cod	e	
Model	Phase	Display	Communicati	Analog output	Digital input	Relay output	2	3	5	9	A
PZ194U-□X1	single phase	LED	-	-	-	-	•	•	•	•	•
PZ194U-□XY1	single phase	LCD					-	-	-	-	-
PZ194U-□X4	a e	LED						•	-	-	-
PZ194U-□XY3	thre	LCD		-	-	-	-	-	-	•	
PZ194U-□K1	le se	LED	1	1 1						-	-
PZ194U-□KY1	sing pha	LCD	1		-		-	-			
PZ194U-□K4	se Se	LED	1	1					-		
PZ194U-□KY3	thre pha	LCD	1	1	-	-	-	-	-	•	
PZ194U-□D4(T)	three phase	LED	1	3	-	-	•	-	-	•	-
PZ194U-□S1	se	LED			4			-			
PZ194U-9S1J	gle pha	LED	1	-	-	2	-	-	-	-	-
PZ194U-DSY1	sing	LCD			4		-	-	-		-

PZ194U-□S4		LED			4	3	-	-	-	-	
PZ194U-9S4J		LED			4	3	-	-	-	•	-
PZ194U-9S4T	e	LED	1	-	4	3	-	-	-		-
PZ194U-9S4K	e phas	LED			4	-	-	-	-		-
PZ194U-□SY3	thre	LCD			4	3	-	-	-		-

Note:

1. AS4, AS1, ASY3 and ASY1 only have 2 digital inputs and 2 relay outputs;

2. Numbers in the blank indicate channels of corresponding functions;

3. ■ means the corresponding outline is available.

3. Installation and wiring

3.1 Outline dimension

Outline code	Pointer meter model	Panel (mm ²)	Cut-out (mm ²)	Installation depth (mm)
2	42 square type	120×120	111×111	55.5/76
3	6 square type	83×83	76×76	75
9	9 square type	96×96	91×91	75/98
А	61 square type	74×74	67×67	75/90
5	5 slot type	96×48	91×44	68.5/82

3.2 Installation method

1) On the fixed distribution electric cabinet, choose a suitable place for cutout by size of cut-out;

2) Take off the fixed clip of meter.

3) Insert the meter into the cutout.

4) Push the fixed clip to fix the meter.

3.3 Wiring diagram

Note: upper diagram is for the meters with all functions. If a meter only has some of the functions shown in upper diagram, please refer to the wiring diagram on the case of that meter.

Wiring instruction:

1. Voltage input: make sure that input voltage is not larger than rated voltage, otherwise, please connect PT to meter. For user's convenience, please adopt wiring terminal row.

2. Make sure voltage of three phases corresponding to each other, that means the phase sequence and direction are same.

3. The actual wiring method should be the same with the inner wiring method of the meter.

4. Power supply: AC/DC (80 \sim 270)V. User can choose fuse with max. rated current 0.25A.

5. In three phase three wire mode, connect terminal 11 to phase A, connect terminal 13 to phase C, and connect terminal 14 to phase B.

4. Operation

4.1 Panel instruction

A: Unit and signsB: ButtonC: Measured value display

PZ194U-9K4 panel

4.2 Display

Measurement display interfaces show measured data of voltage, frequency, digital input and relay output. User can press \leftarrow or \rightarrow button to switch between different interfaces in a cyclic order. If user presses \leftarrow or \rightarrow button to check frequency interface, and then presses \leftarrow button, user can check phase voltage and line voltage.

Main measurement display interfaces are as follows:

Single phase voltmeter	Three phase voltmeter	Instruction
3800	5.002 kv 5.003 kv 5.001 kv	Voltage display interface In single phase voltmeter: U=380.0V; In three phase ampere meter: Ua=5.002kV, Ub=5.003kV, Uc=5.001kV

dl	1234	Ы 1234	Press \blacklozenge or \blacklozenge button to switch to digital input interface.
do	12	аь 123	Press \blacklozenge or \blacklozenge button to switch to relay output interface.
F	50.00	F 50.00	F=50.00Hz ∘ Press ← or → button to check frequency data. In left two pictures, F=50.00Hz ∘

Notice:

If some information does not exist or relative information does not work, it means that meter does not have relative function.

5. Setting

There are reading and programming modes in the meter.

5.1 Reading mode

In measurement display interface, keep pressing Menu button for more than three seconds until **FERM** appears, then press **-** button to enter system parameter checking interface. In this interface, the parameters only can be read.

0000	+ InPt	+ in l	4 3800	Primary voltage value
		+/+ Unt. 1	↔ oFF	Unit of primary voltage value
Menu >3S		+++ , n2	₽ 380.0	Secondary voltage value
		+++ Unt.2		Unit of secondary voltage value
rEAd				
	++ Coññ	+ Rddr	+ 000 I	Communication address
		+/+ ьяиd	4 9600	Baud rate
		+/+ dRER	+ nB/	Data format
	+/+ do-1	+ ñodE	+ rEñ	Remote control mode
			+/+ ALr	Alarm mode
			+/+ oFF	Off
		+++ EI ñE	+ · 00 10	Pulse time
		+/+ I EEñ	↔ Ш -н	Alarm item
		++ dEL9	+ 00 IO	Delay time
		+/+ URLE	+ 6000	Alarm threshold value
		•/• HY5	+ 000.5	Hysteresis value
	+/+ Ro-1	+ nodE	+ 4-20	Analog output mode
		+ + d5	+ 0000	Lower limit value of analog output range
		+/+ F5	+ 3800	Upper limit value of analog output range
	+/+ 5EE	• CodE		Programming password
		+++ LIGH	≁ L5	Brightness degree
		+++ ALr	+ 1200	Off limit alarm
	+/+ uEr	•• 1 14A		Software version

Figure 1. System parameter checking interface of single phase voltmeter

Figure 2 System parameter checking interface of three phase voltmeter Note: display interfaces are slightly different in different models of meters.

5.2 Programming mode

In measurement display interface, keep pressing Menu button for more than three seconds until **FFRd** appears, then press **or button** to switch to **Praf**. Now press **button** to enter program password interface. Press **or button** to input password (defaulted 0001), and then press **button** to enter setting menu. (Note: if the password is not right, **button** to program password interface after seven seconds.)

The method of entering setting menu of three phase voltmeter is as follows:

0000	Menu	rEAd	+/+	ProG	+	ProG	+/+	ProG	
0.000	>35					0000		0001	

The method of entering setting menu of single phase voltmeter is as follows:

0000	Menu >3S	rEAd	+/+	ProG	+	CodE	*	0000	+/+	000 I	-,
------	-------------	------	-----	------	---	------	---	------	-----	-------	----

If user wants to exit program setting interface, please return to first level of program setting interface, then press Menu button to see **SRuE**--**no**, now there are two choices available:

(1) Press **-** button to exit program setting interface without saving modified data;

(2) Press ← or → button to switch to **SRuE**--**UES**, then press ← J button to exit program setting interface and save modified data.

The method of saving modified data and exiting setting interface of three phase voltmeter is as follows:

The method of saving modified data and exiting setting interface of single phase voltmeter is as follows:

Setting menu instruction:

First lev	el		Second leve	1	Third level												
Letter	Instr ion	uct	Letter	Instruction	Letter/number	Instruction											
	I nPL		în l	Primary value of voltage	0000~9999	0~9999											
			Un E. I	Primary unit of voltage	aFF or an	Unit oFF means V on means kV											
						īn ē	Secondary value of voltage	0000~9999	0~9999								
i nPE		Single Phase	Un E.2	Secondary unit of voltage	aFF or an	Unit (User can not set this) <i>a FF</i> means V <i>a n</i> means mV											
			PE. I	Primary value of voltage	0000~9999	Unit kV											
		hase	hase	hase	hase	hase	hase	hase	hase	hase	phase	phase	phase	PE. 2	Secondary value of voltage	0000~9999	Unit V
	out	put ree pl	- E L	Wiring	n34	three phase three wire											
	Inl	th	nee	mode	n33	three phase four wire											
			Rddr	Meter address	000 1~0247	1~247											
			ЬURd	Baud rate	2400~9600	2400、4800、9600bps											
E o ō l	Com	mu			nB l	No check one stop bit											
	nicat	ion	J0L6		n82.	No check, two stop bits											
			01122	Data format	a8 l	Odd check, one stop bit											
					E.B. (Even check, one stop bit											
do - 1	Alarr	n	ñodE	Relay mode	RLr	Alarm											
10																	

qo-5	setting			rEñ	Remote control
				_FF	Off
		EI ĀE	Relay pulse time	0000~9999	Unit 0.1s
		IEEñ	Alarm item	FH,dilHetc.	See alarm item setting
		dELY	Relay delay	0000~99999	Unit 0.1s
		JAL	Alarm limit value	0000~9999	Set off limit alarm value (secondary value)
		H¥5	Hysteresis value	0000~9999	Set hysteresis value (secondary value)
	Analog Analog output setting	IEEñ	Analog output item	<i>∐R, I R</i> etc.	see analog output item setting
Ro- I		d 5	Lower limit value of analog output	0000~9999	0≤DS≤0.5*a a: secondary rated value (FS-DS)≥500
		F S	Upper limit value of analog output	0000~9999	0.5*a≤FS≤1.2*a a: secondary rated value (FS-DS)≥500
		ЕЧЕ	Cyclic display period	0000~9999	0~60s
		EodE	Password	0000~9999	Setting password
SEŁ	SEE	LI GH	Brightness	L I~L5	L1 \sim L5, lower to higher brightness degree
System paramet		ALr	Flashing alarm	0000~1200	Flashing alarm range is between 30.0 and 120.0% of rated value. 0.0% means this function is off.

5.3 System setting

E.g. set password to be 2, change cyclic display period to be 3s, choose brightness degree to be L5, and select flashing alarm value to be more than 120% of rated value.

Enter setting interface, press \leftarrow or \rightarrow button to select **SEL**, then press \leftarrow button to enter system setting menu. Now press \leftarrow or \rightarrow button again to select specific items and press \leftarrow button again.

☆Set password

Single phase voltmeter:

Three phase voltmeter:

[⊗]Choose brightness degree

Single phase voltmeter:

Three phase voltmeter:

*Change cyclic display period

Three phase voltmeter:

[™]Select flashing alarm value

Single phase voltmeter:

Three phase voltmeter:

5.4 Input setting

User can change input signal according to actual situation in field. Unit of primary value is V. E.g. set input signal as AC380V/380V (user can not change secondary value 380V). First enter setting menu, second press \leftarrow or \rightarrow button to select $I \cap PL$, third press \leftarrow button to enter input signal setting menu. Now press \leftarrow or \rightarrow button again to select specific items and press \leftarrow button again.

Three phase voltmeter:

Single phase voltmeter:

5.5 Relay output setting

User can change first relay from off to alarm mode, alarm activates after 5 seconds when Phase A voltage is lower than 300V with hysteresis value of 0.5V. First enter setting interface, second press \leftarrow or \rightarrow button to select d = 1, third press + button to enter relay output setting menu. Now press + or + button again to select specific items and press + button again.

[™]Set alarm mode

Single phase voltmeter:

Three phase voltmeter:

Set alarm item

Single phase voltmeter:

Three phase voltmeter:

XSet alarm voltage value

Single phase voltmeter:

Three phase voltmeter:

nodE

ILEA

[™]Set relay delay time

Single phase voltmeter:

Three phase voltmeter:

Set hysteresis value

Single phase voltmeter:

Three phase voltmeter:

User can change second relay from off to remote control mode, and set remote control pulse time to be 5 seconds. First enter setting interface, second press 🔶 or \rightarrow button to select $d_0 - d_1$, third press \rightarrow button to enter relay output setting menu. Now press \leftarrow or \rightarrow button again to select specific items and press

Three phase voltmeter:

button again.

XSet remote control mode

Single phase voltmeter:

X Set relay pulse time

Single phase voltmeter:

Three phase voltmeter:

5.6 Analog output setting

E.g. set first analog output as phase A voltage $0\sim$ 380V corresponds to $4\sim$ 20mA output. First enter setting menu, second press \leftarrow or \rightarrow button to select $\exists a \cdot l$, third press - button to enter analog output setting menu. Now press - or → button again to select specific item and press → button again.

XAnalog output item Three phase voltmeter:

*Set lower limit value of analog output

Single phase voltmeter:

Three phase voltmeter:

*Set upper limit value of analog output

Single phase voltmeter:

Ro- 1 F5 0000 0000 F5 380.0 F5

Note: 1) User can not set analog output mode such as $4 \sim 20$ mA;

2) Analog output item of single phase voltmeter is defaulted to be voltage. User can not change it.

5.7 Communication setting

E.g. set communication address to be 3, select baud rate as 9600bps, choose data format as no check mode. First enter setting menu, second press - or button to select [ann, third press 🔶 button to enter communication menu. Now press \leftarrow or \rightarrow button to select specific items and press \leftarrow button again.

X Set communication address

Single phase voltmeter:

Three phase voltmeter:

[™]Set data format

Single phase voltmeter:

Lonn

Three phase voltmeter:

[™]Set baud rate

Single phase voltmeter:

Three phase voltmeter:

Ronn + Conn ++ Conn +

6. Common problems and troubleshooting

6.1 About communication

The meter does not send data back

First make sure the communication setting information of the meter such as subordinate machine address, baud rate and check mode corresponds to the requirements of host computer. If several meters on spot do not send data back, please check whether the communication bus on spot is connected correctly and whether RS485 converter working normally.

If there is only one meter or a few meters communicate abnormally, related communication bus is also needed to be checked. You may check whether there is an error in the host computer by exchanging the subordinate machine addresses of normal meter and abnormal meter. Besides you may check whether there is a fault in the meter by exchanging the installation positions of normal and abnormal meters.

The data sent back by the meter is incorrect

Communication data which is opened to users includes primary grid float type data and secondary grid int/long type data. Please read the instruction for data storage address and format in communication address table carefully, and make sure to transmit data according to relative format.

It is suggested to download testing software MODSCAN32 for checking MODBUS-RTU communication protocol from our homepage. This software adopts standard MODBUS-RTU protocol which can display data in the formats such as integer, float and hexidecimal, so that you can compare the data with measured data displayed on the meter directly.

Communication indication sign

There is a communication indication sign in the display interface of meters. If a meter receives communication data during communication test process, this communication sign will flash.

6.2 Measured data is not correct

First make sure that the meter has been input right voltage. The multimeter is used for measuring voltage. Electric quantity displayed on the meter is the value of primary grid; it may lead to wrong electric quantity display if the ratio of voltage transformer does not conform to that of transformer in-service. The defaulted voltage range is not allowed to be modified after delivery. Connection network is available to be modified according to actual connection on spot, but the connection mode set in programming shall correspond with the actual connection method, otherwise it may lead to wrong display.

6.3 Meter does not work

Ensure proper auxiliary supply (AC/DC80-270V) is linked to the auxiliary supply terminal. As the meter may be damaged by auxiliary supply voltage which is beyond rated range and can not recovery. Use multi-meter to measure the voltage of auxiliary supply, if the meter does not display when the voltage is proper, please electrify again.

6.4 Other phenomena

Please contact our technical service department to give a detailed description of the field condition. Our technicians will analyze possible causes according to your description. The company will appoint technicians to deal with problems on spot as soon as possible if the problem can not be settled after oral communication.

7. Technical specification

Electrical feature						
Accuracy		0.5%(defaulted)、 0.2%				
Display mode		LED or LCD				
Data refresh rate		1s				
	Rated value	AC 100V, 220V, 380V				
Input	Overload	continuous 1.2Un				
	Frequency	45~65Hz				
		17				

Dowor currely	Working range	AC 80~270V 50/60Hz, DC 80~270V		
Power supply	Consumption	≤5VA		
Digital input		Dry contact mode		
Relay output		Contact capacity (resistive): AC 5A/250V, DC 5A/30V		
		DC 4 \sim 20mA, 0 \sim 20mA, 0 \sim 5mA etc.,		
	Current output	If 4 \sim 20mA or 0 \sim 20mA, load≤350Ω		
Analog output		lf 0∼5mA,load≤1 kΩ		
	Voltage output	DC 0 \sim 5V, 1 \sim 5V, 0 \sim 10V etc., load \geq 20k Ω		
Communication		RS485 interface, Modbus-RTU protocol, baud rate 2400 \sim 9600bps		
Environment				
Working temperat	ure	LED:-40∼70℃ LCD:-25∼70℃		
Storage temperatu	ire	-40∼85℃		
Relative humidity		≤93%RH		
Pollution degree		2		
Measurement type		САТ III		
Insulating ability		Between power and input or output≥AC2kV,		
		Between input and output≥AC1kV		
Altitude		2500m		
ЕМС				
Electrostatic di immunity	scharge surge	IEC 61000-4-2-III Class		
Radiated, electromagnetic fie	radio-frequency, eld immunity	ес 61000-4-3-III class		
Electrical fast immunity	transient/burst	EC 61000-4-4-IV class		
Surge immunity		IEC 61000-4-5-IV class		
Immunity to	conducted			
disturbances, induced by		IEC 61000-4-6-III Class		
radio-frequency fie	elds			
Power frequency immunity	magnetic field	IEC 61000-4-8-III Class		
Voltage dips, sho and voltage variati	ort interruptions ons immunity	IEC 61000-4-11-III Class		

Appendix 1 Alarm items and units of relative alarm threshold

Three phase voltmeter

No.	Alarm item	Unit of alarm value
0	UA-H(Phase A high voltage alarm)	
1	UA-L (Phase A low voltage alarm)	
2	Ub-H (Phase B high voltage alarm)	
3	Ub-L (Phase B low voltage alarm)	0.1V
4	UC-H (Phase C high voltage alarm)	0.1 V
5	UC-L (Phase C low voltage alarm)	
6	3U-H~(One of three phases high voltage alarm)	
7	$\operatorname{3U-L}\nolimits(\operatorname{One}\nolimits$ of three phases low voltage alarm $)$	
8	F-H (High frequency alarm)	0.0145
9	F -L (Low frequency alarm)	0.01Hz
10	dl1.H(Relay activates when first digital input conducts.)	
11	dl1.L(Relay activates when first digital input opens.)	
12	dl2.H (Relay activates when second digital input conducts.)	
13	dl2.L(Relay activates when second digital input opens.)	Alarm value is not needed
14	dI3.H(Relay activates when third digital input conducts.)	mode.
15	dI3.L(Relay activates when third digital input opens.)	
16	dI4.H(Relay activates when fourth digital input conducts.)	
17	dl4.L(Relay activates when fourth digital input opens.)	

Single phase voltmeter

No.	Alarm item	Unit of alarm value
0	UH (Phase A high voltage alarm)	0.1.V
1	UL (Phase A low voltage alarm)	0.1 V
2	F-H (High frequency alarm)	0.0111-
3	F -L (Low frequency alarm)	0.01H2

4	dl1.H $(\mbox{Relay activates when first digital input conducts.})$	
5	dl1.L $(\mbox{Relay activates when first digital input opens.})$	
6	dl2.H $(\mbox{Relay activates when second digital input conducts.})$	
7	dl2.L $(\mbox{Relay activates when second digital input opens.})$	Alarm value is not
8	dl3.H $(\mbox{Relay activates when third digital input conducts.})$	relay linkage mode.
9	dl3.L $(\mbox{Relay activates when third digital input opens.})$	
10	dl4.H $({\rm Relay}{\rm activates}{\rm when}{\rm fourth}{\rm digital}{\rm input}{\rm conducts.})$	
11	dI4.L(Relay activates when fourth digital input opens.)	

Appendix 2 Modbus-RTU Communication address information list

• Read grid data through function code 0x03/0x04

Address	Format	Data instruction	Unit	R/W	
Primary grid data					
0x06	float	Phase A voltage	V	R	
0x08	float	Phase B voltage	V	R	
0x0A	float	Phase C voltage	V	R	
0x0C	float	line voltage	V	R	
0x0E	float	line voltage	V	R	
0x10	float	line voltage	V	R	
0x12 \sim 0x2A	float	Reserved			
0x2C	float	Frequency	Hz	R	
0x2E	float	Reserved			
0x30	float	Average value of three phase voltages	V	R	
0x32	float	Average of three line voltages	V	R	
Secondary grid data					

Address	Format	Data instruction	Proportion	R/W
0v100~0v101	D:+[22]	Relay output status	0: open	R
001001 ~ 00101	ыцэај	Bit[0]-Bit[2]	1: activate	
0v102~0v102	B!+[22]	Digital input status	0: open	D
0X102 ~ 0X105	ыцэгі	Bit[0]-Bit[3]	1: closed	n
0x104~0x105	int	Reserved		
0x106	int	Phase A voltage	0.1V	R
0x107	int	Phase B voltage	0.1V	R
0x108	int	Phase C voltage	0.1V	R
0x109	int	line voltage	0.1V	R
0x10A	int	line voltage	0.1V	R
0x10B	int	line voltage	0.1V	R
0x10C~0x11F	int	Reserved		
0x120	int	Frequency	0.01Hz	R

• Read status information of relay through function code 0x01, and control relay

through function code 0x05, 0x0F.

Address	Format	Data content	Data instruction	R/W
0000	Bit	First relay	0:off 1:closed	R/W
(fixed address)	Bit	Second relay	0:off 1:closed	R/W
	Bit	Third relay	0:off 1:closed	R/W

Remotely control relay through function code 0x05, 0x0F

Address	Format	Data content	Data instruction	R/W
0000	Bit	First relay	0:off 1:closed	R/W
0001	Bit	Second relay	0:off 1:closed	R/W
0002	Bit	Third relay	0:off 1:closed	R/W

• Read status of digital input through function code 0x02

Address	Format	Data content	Data instruction	R/W
	Bit	First digital input	0:off 1:closed	R
0000	Bit	Second digital input	0:off 1:closed	R
(fixed	Bit	Third digital input	0:off 1:closed	R
address)	Bit	Fourth digital input	0:off 1:closed	R

Modbus-RTU message format instruction

Read the status of relay output (Function code 0x01)

			E	data		
	Frame structure	Address code	Function code	initial relay address	Number of relay	CRC check code
Host	Byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
request	Data range	1~247	0x01	0x0000 (fixed)	0x0001~0x0004	CRC16
	Message example	<u>0x01</u>	<u>0x01</u>	<u>0x00 0x00</u>	<u>0x00 0x02</u>	<u>0xBD 0xCB</u>
	frame	address	6	data	code	CRC check
	structure	code	function code	byte of register	register value	code
slave	Byte	1 byte	1 byte	1 byte	1 byte	2 bytes
response	Message example	<u>0x01</u>	<u>0x01</u>	<u>0x01</u>	<u>0x03</u>	<u>0x11 0x89</u>

Remark: the register value in the slave response indicates the state of the relay. Beginning from the lowest bit of the byte, each number corresponds to the state of a loop of relay output. "1" indicates the relay is closed, while "0" indicates the relay is cut off. In the upper list, the register value "0x03" corresponds to "0000 0011" in binary system which means the first and second loop of relays are closed.

Read the state of digital input (Function code 0x02)

	_		(da		
	Frame structure	address code	function code	initial switch address	number of switches	CRC check code
Host	Byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
request	Data range	1~247	0x02	0x0000	0x0001~0x000C	CRC16
	Message example	<u>0x01</u>	<u>0x02</u>	<u>0x00 0x00</u>	<u>0x00 0x04</u>	<u>0x79 0xC9</u>
				da	ata code	
Slave	Data structure	address data	function code	byte of register	register value	CRC check code
response	Byte	1 byte	1 byte	1 byte	1 byte	2 bytes
	Message example	<u>0x01</u>	<u>0x02</u>	<u>0x01</u>	<u>0x02</u>	<u>0x20 0x49</u>

Remark: the register value in the slave response indicates the state of digital input. Beginning from the lowest bit of the byte, each number corresponds to the state of a loop of digital inut. "1" indicates the switch is closed, while "0" indicates the switch is cut off. In the upper list the register value "0x02" is "0000 0010" in binary system which means second loop of digital input is closed.

Read data register value (function code 0x03/0x04)

	_		<i>.</i>	data c	ode	
	Frame structure	address code	code	initial register address	number of register	CRC check code
Host	Byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
request	data range	1~247	0x03/0x04		max 48	CRC16
	message example	<u>0x01</u>	<u>0x03</u>	<u>0x00 0x06</u>	<u>0x00 0x06</u>	<u>0Xe4 0x36</u>
	frame	address	function	data c	ode	CRC check
	structure	code	code	byte of register	register value	code
slave response	byte	1 byte	1 byte	1 byte	12 bytes	2 bytes
	message example	<u>0x01</u>	<u>0x03</u>	<u>0x0C</u>	(12-byte data)	(CRC16)

Remark: the initial register address in host inquiry is the initial address of the data collected from primary grid or secondary grid. The number of register indicates the length of the data. In the upper list 23 the register address "0x00 0x06" indicates the initial address of phase voltage float data of three phases, and the number of register "0x00 0x06" indicates the length of the data includes three Word data and three float data. Please refer to appendix 1 MODBUS-RTU communication address information table. ;)

Remotely-contro	ol single	relay	output	(function	code	0x05
-----------------	-----------	-------	--------	-----------	------	------

	frame	address	function	data code			
host request	structure	code	code	initial relay address	relay action value	CKC CHECK CODE	
	byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	
	data	1~247	0x05	0x0000~0x0003	0xFF00/0x0000	CRC16	
	range	1 20		0,0000 0,0000			
	message	0v01	0×05	0,000,0,000		0286 022 4	
	example	0.01	0x05	0000 0000	00011 0000	<u>0x8C 0x5A</u>	
slave - response -	frame	address	function	data code		CBC shock code	
	structure	code	code	initial relay address	relay action value	CRC theth tode	
	byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	
	message		OvOE	0,000 0,000		0.000 0.024	
	example	<u>0x01</u>	<u>0x05</u>	00000000	<u>UXFF UXUU</u>	<u>0x8C 0X3A</u>	

Remark: in host request, the relay action value "0xFF00" indicates the relay is closed, while "0x0000" indicates the relay is cut off. If you want to perform remotely control, please make sure the relay is working in "remotely control" mode.

Remotely-control multi-relay output (function code 0x0F)

	frame	address	function	data code				
host request				initial		number	relay	CRC check
	structure	code	code	relay	number of	of data	action	code
				address	relay	byte	value	
	byte	1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte	2 bytes
	data		0.05		0x0001 \sim			00.01.0
	range	1~247	0x0F	0x0000	0x0004	0x01		CRC16
	message	0.01	0.05	<u>0x00</u>	0.00.0.00	0.01	0.07	0.05.0.05
	example	<u>0x01</u>	UXUE	<u>0x00</u>	<u>0x00 0x03</u>	<u>0x01</u>	<u>0x07</u>	<u>UXCE 0X95</u>
	frame	address	function	data code			CRC check	
slave response	structure	code	code	initial relay address		number of relay		code
	byte	1 byte	1byte	2bytes		2bytes		2 bytes
	message example	<u>0x01</u>	<u>0x0F</u>	<u>0x00 0x00</u>		<u>0x00 0x00</u> <u>0x00 0x03</u>		<u>0x15 0xCA</u>

Remark: in the host inquiry, beginning from the lowest bit of relay action value, each bit corresponds to a loop of relay output. "1" indicates the relay is closed, while "0" indicates the relay is cut off. In the upper list, relay action value "<u>0x07</u>" is "0000 0111" in binary system, which means the first, second and third loops of relay are closed.

CE

The information in this document is subject to change without further notice.

JIANGSU SFERE ELECTRIC CO., LTD

Add: 1 Dongding R., Jiangyin, Jiangsu, China. P.C: 214437 Tel: +86-510-86199063 +86-510-86199069 +86-510-86199073 Email: export@sfere-elec.com Website: www.sfere-elecnova.com